IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14865-d1259428.html
   My bibliography  Save this article

A Non-Intrusive Identification Approach for Residential Photovoltaic Systems Using Transient Features and TCN with Attention Mechanisms

Author

Listed:
  • Yini Ni

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China)

  • Yanghong Xia

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China)

  • Zichen Li

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China)

  • Qifan Feng

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China)

Abstract

In order to reduce the negative impact of the large-scale grid connection of residential photovoltaic (PV) equipment on the distribution network, it is of great significance to realize the real-time accurate identification of the grid connection state and its switching of residential PV equipment from the distribution network side. This paper introduces a non-intrusive method for identifying residential PV systems using transient features, leveraging the temporal convolutional network (TCN) model with attention mechanisms. Firstly, the discrimination and redundancy of transient features for residential PV devices are measured using a feature selection method based on the semi-Fisher score and maximal information coefficient (MIC). This enables the construction of a subset of identification features that best characterize the PV devices. Subsequently, a sliding window two-sided cumulative sum (CUSUM) event detection algorithm, incorporating a time threshold, is proposed for the real-time capturing of PV state switching and grid connection behavioral events. This algorithm effectively filters out disturbances caused by the on/off cycles of low-power residential devices and captures the transient time windows of PV behaviors accurately. On this basis, a TCN model with attention mechanisms is proposed to match the discerned event features by assigning varying weights to different types of characteristics, thereby facilitating the precise recognition of a PV grid connection and state-switching events. Finally, the proposed method is validated on a custom-designed non-intrusive experimental platform, demonstrating its precision and real-time efficiency in practical applications.

Suggested Citation

  • Yini Ni & Yanghong Xia & Zichen Li & Qifan Feng, 2023. "A Non-Intrusive Identification Approach for Residential Photovoltaic Systems Using Transient Features and TCN with Attention Mechanisms," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14865-:d:1259428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dinesh, Chinthaka & Welikala, Shirantha & Liyanage, Yasitha & Ekanayake, Mervyn Parakrama B. & Godaliyadda, Roshan Indika & Ekanayake, Janaka, 2017. "Non-intrusive load monitoring under residential solar power influx," Applied Energy, Elsevier, vol. 205(C), pages 1068-1080.
    2. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    3. Ali Faisal Murtaza & Hadeed Ahmed Sher, 2023. "A Reconfiguration Circuit to Boost the Output Power of a Partially Shaded PV String," Energies, MDPI, vol. 16(2), pages 1-13, January.
    4. Cominola, A. & Giuliani, M. & Piga, D. & Castelletti, A. & Rizzoli, A.E., 2017. "A Hybrid Signature-based Iterative Disaggregation algorithm for Non-Intrusive Load Monitoring," Applied Energy, Elsevier, vol. 185(P1), pages 331-344.
    5. Liu, Yu & Liu, Congxiao & Ling, Qicheng & Zhao, Xin & Gao, Shan & Huang, Xueliang, 2021. "Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring," Applied Energy, Elsevier, vol. 303(C).
    6. Mahfoud Drouaz & Bruno Colicchio & Ali Moukadem & Alain Dieterlen & Djafar Ould-Abdeslam, 2021. "New Time-Frequency Transient Features for Nonintrusive Load Monitoring," Energies, MDPI, vol. 14(5), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shuangyuan & Li, Ran & Evans, Adrian & Li, Furong, 2020. "Regional nonintrusive load monitoring for low voltage substations and distributed energy resources," Applied Energy, Elsevier, vol. 260(C).
    2. Shi, Xin & Ming, Hao & Shakkottai, Srinivas & Xie, Le & Yao, Jianguo, 2019. "Nonintrusive load monitoring in residential households with low-resolution data," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
    4. Welikala, Shirantha & Thelasingha, Neelanga & Akram, Muhammed & Ekanayake, Parakrama B. & Godaliyadda, Roshan I. & Ekanayake, Janaka B., 2019. "Implementation of a robust real-time non-intrusive load monitoring solution," Applied Energy, Elsevier, vol. 238(C), pages 1519-1529.
    5. Liu, Yu & Liu, Congxiao & Ling, Qicheng & Zhao, Xin & Gao, Shan & Huang, Xueliang, 2021. "Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring," Applied Energy, Elsevier, vol. 303(C).
    6. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    7. Tomasz Jasiński, 2020. "Modelling the Disaggregated Demand for Electricity in Residential Buildings Using Artificial Neural Networks (Deep Learning Approach)," Energies, MDPI, vol. 13(5), pages 1-16, March.
    8. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    9. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    10. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.
    11. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    12. Li, Bin & Dong, Xujun & Wen, Jianghui, 2022. "Cooperative-driving control for mixed fleets at wireless charging sections for lane changing behaviour," Energy, Elsevier, vol. 243(C).
    13. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    14. Poyrazoglu, Gokturk & Coban, Elvin, 2021. "A stochastic value estimation tool for electric vehicle charging points," Energy, Elsevier, vol. 227(C).
    15. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
    16. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    17. Xiang, Yue & Jiang, Zhuozhen & Gu, Chenghong & Teng, Fei & Wei, Xiangyu & Wang, Yang, 2019. "Electric vehicle charging in smart grid: A spatial-temporal simulation method," Energy, Elsevier, vol. 189(C).
    18. Chaminda Bandara, W.G. & Godaliyadda, G.M.R.I. & Ekanayake, M.P.B. & Ekanayake, J.B., 2020. "Coordinated photovoltaic re-phasing: A novel method to maximize renewable energy integration in low voltage networks by mitigating network unbalances," Applied Energy, Elsevier, vol. 280(C).
    19. Ferro, G. & Minciardi, R. & Robba, M., 2020. "A user equilibrium model for electric vehicles: Joint traffic and energy demand assignment," Energy, Elsevier, vol. 198(C).
    20. Jianxin Qin & Jing Qiu & Yating Chen & Tao Wu & Longgang Xiang, 2022. "Charging Stations Selection Using a Graph Convolutional Network from Geographic Grid," Sustainability, MDPI, vol. 14(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14865-:d:1259428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.