IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14253-d1248462.html
   My bibliography  Save this article

Toward Food Security in 2050: Gene Pyramiding for Climate-Smart Rice

Author

Listed:
  • Isnaini Isnaini

    (Lab of Plant Breeding, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
    Faculty of Agriculture, Universitas Riau, Simpang Baru, Pekanbaru 28293, Indonesia)

  • Yudhistira Nugraha

    (National Research and Innovation Agency of Indonesia, Bogor 16911, Indonesia)

  • Niranjan Baisakh

    (School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70808, USA)

  • Nono Carsono

    (Lab of Plant Breeding, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia)

Abstract

The decline in crop productivity due to climate change is a major issue that threatens global food security and is the main challenge for breeders today in developing sustainable varieties with a wider tolerance to abiotic and biotic stresses. Breeding climate-smart rice (CSR) cultivars may be the best adaptation to climate change, with the potential to improve future food security and profitability for farmers in many nations. The main objective of this review is to highlight the direction of development of superior rice breeding from time to time, and various studies of new techniques of breeding methods for pyramiding various superior rice characteristics, especially characteristics related to abiotic stress, and to make a climate-suitable genotype that is resilient to climate change. For the design and strategy of the information search, a methodology was followed to compile and summarize the latest existing studies on rice breeding for abiotic stresses. The findings revealed that there is still an empty research gap in the context of supplying CSR products, which should be a priority for rice researchers in order to increase dissemination and ensure food security for future generations, particularly in climatically vulnerable agro-ecologies. And we conclude that, while technological innovation, specifically the integration of DNA markers and the genomic approach into conventional breeding programs, has made major contributions to the development of CSR, there is an urgent need to build strategic plans for the development of varieties with various stress tolerances.

Suggested Citation

  • Isnaini Isnaini & Yudhistira Nugraha & Niranjan Baisakh & Nono Carsono, 2023. "Toward Food Security in 2050: Gene Pyramiding for Climate-Smart Rice," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14253-:d:1248462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Youlin Peng & Yungao Hu & Qian Qian & Deyong Ren, 2021. "Progress and Prospect of Breeding Utilization of Green Revolution Gene SD 1 in Rice," Agriculture, MDPI, vol. 11(7), pages 1-11, June.
    2. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Erratum to: increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 517-518, October.
    3. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    4. Kenong Xu & Xia Xu & Takeshi Fukao & Patrick Canlas & Reycel Maghirang-Rodriguez & Sigrid Heuer & Abdelbagi M. Ismail & Julia Bailey-Serres & Pamela C. Ronald & David J. Mackill, 2006. "Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice," Nature, Nature, vol. 442(7103), pages 705-708, August.
    5. Jesús Crespo Cuaresma & Wolfgang Fengler & Homi Kharas & Karim Bekhtiar & Michael Brottrager & Martin Hofer, 2018. "Will the Sustainable Development Goals be fulfilled? Assessing present and future global poverty," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-8, December.
    6. Yusuff Oladosu & Mohd Y. Rafii & Fatai Arolu & Samuel Chibuike Chukwu & Ismaila Muhammad & Isiaka Kareem & Monsuru Adekunle Salisu & Ibrahim Wasiu Arolu, 2020. "Submergence Tolerance in Rice: Review of Mechanism, Breeding and, Future Prospects," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    7. Yoko Hattori & Keisuke Nagai & Shizuka Furukawa & Xian-Jun Song & Ritsuko Kawano & Hitoshi Sakakibara & Jianzhong Wu & Takashi Matsumoto & Atsushi Yoshimura & Hidemi Kitano & Makoto Matsuoka & Hitoshi, 2009. "The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water," Nature, Nature, vol. 460(7258), pages 1026-1030, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    2. Nkongho Ayuketang Arreyndip, 2021. "Identifying agricultural disaster risk zones for future climate actions," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-16, December.
    3. Clyde E. Goulden & Jerry Mead & Richard Horwitz & Munhtuya Goulden & Banzragch Nandintsetseg & Sabrina McCormick & Bazartseren Boldgiv & Peter S. Petraitis, 2016. "Interviews of Mongolian herders and high resolution precipitation data reveal an increase in short heavy rains and thunderstorm activity in semi-arid Mongolia," Climatic Change, Springer, vol. 136(2), pages 281-295, May.
    4. Haixin Liu & Anbing Zhang & Tao Jiang & Haitao Lv & Xinxia Liu & Hefeng Wang, 2016. "The Spatiotemporal Variation of Drought in the Beijing-Tianjin-Hebei Metropolitan Region (BTHMR) Based on the Modified TVDI," Sustainability, MDPI, vol. 8(12), pages 1-15, December.
    5. Demetrios E. Tsesmelis & Christos A. Karavitis & Panagiotis D. Oikonomou & Stavros Alexandris & Constantinos Kosmas, 2018. "Assessment of the Vulnerability to Drought and Desertification Characteristics Using the Standardized Drought Vulnerability Index (SDVI) and the Environmentally Sensitive Areas Index (ESAI)," Resources, MDPI, vol. 8(1), pages 1-19, December.
    6. Andre D. L. Zanchetta & Paulin Coulibaly, 2022. "Hybrid Surrogate Model for Timely Prediction of Flash Flood Inundation Maps Caused by Rapid River Overflow," Forecasting, MDPI, vol. 4(1), pages 1-23, January.
    7. Michael Berlemann & Daniela Wenzel, 2018. "Precipitation and Economic Growth," CESifo Working Paper Series 7258, CESifo.
    8. Sidney Michelini & Barbora Šedová & Jacob Schewe & Katja Frieler, 2023. "Extreme weather impacts do not improve conflict predictions in Africa," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
    9. Berlemann, Michael & Eurich, Marina, 2021. "Natural hazard risk and life satisfaction – Empirical evidence for hurricanes," Ecological Economics, Elsevier, vol. 190(C).
    10. Daiqi Wang & Hongru Wang & Xiaomei Xu & Man Wang & Yahuan Wang & Hong Chen & Fei Ping & Huanhuan Zhong & Zhengkun Mu & Wantong Xie & Xiangyu Li & Jingbin Feng & Milan Zhang & Zhilan Fan & Tifeng Yang , 2023. "Two complementary genes in a presence-absence variation contribute to indica-japonica reproductive isolation in rice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Zhiqi Yang & Gabriele Villarini, 2020. "On the role of increased CO2 concentrations in enhancing the temporal clustering of heavy precipitation events across Europe," Climatic Change, Springer, vol. 162(3), pages 1455-1472, October.
    12. Yuan-Chih Su & Bo-Jein Kuo, 2023. "Risk Assessment of Rice Damage Due to Heavy Rain in Taiwan," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    13. Michael Berlemann & Thi Xuyen Tran, 2020. "Climate-Related Hazards and Internal Migration Empirical Evidence for Rural Vietnam," Economics of Disasters and Climate Change, Springer, vol. 4(2), pages 385-409, July.
    14. Jinling Piao & Wen Chen & Jin-Soo Kim & Wen Zhou & Shangfeng Chen & Peng Hu & Xiaoqing Lan, 2023. "Future changes in rainy season characteristics over East China under continuous warming," Climatic Change, Springer, vol. 176(9), pages 1-21, September.
    15. Jorge Sepúlveda-Velásquez & Pablo Tapia-Griñen & Boris Pastén-Henríquez, 2023. "Financial effects of natural disasters: a bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2691-2710, September.
    16. Shadi Arfa & Mohsen Nasseri & Hassan Tavakol-Davani, 2021. "Comparing the Effects of Different Daily and Sub-Daily Downscaling Approaches on the Response of Urban Stormwater Collection Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 505-533, January.
    17. Kai Kornhuber & Corey Lesk & Carl F. Schleussner & Jonas Jägermeyr & Peter Pfleiderer & Radley M. Horton, 2023. "Risks of synchronized low yields are underestimated in climate and crop model projections," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Jian Sun & Guangchen Zhang & Zhibo Cui & Ximan Kong & Xiaoyu Yu & Rui Gui & Yuqing Han & Zhuan Li & Hong Lang & Yuchen Hua & Xuemin Zhang & Quan Xu & Liang Tang & Zhengjin Xu & Dianrong Ma & Wenfu Che, 2022. "Regain flood adaptation in rice through a 14-3-3 protein OsGF14h," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Antonio Menéndez Suárez-Inclán & Cristina Allende-Prieto & Jorge Roces-García & Juan P. Rodríguez-Sánchez & Luis A. Sañudo-Fontaneda & Carlos Rey-Mahía & Felipe P. Álvarez-Rabanal, 2022. "Development of a Multicriteria Scheme for the Identification of Strategic Areas for SUDS Implementation: A Case Study from Gijón, Spain," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    20. Daniel Amoak & Isaac Luginaah & Gordon McBean, 2022. "Climate Change, Food Security, and Health: Harnessing Agroecology to Build Climate-Resilient Communities," Sustainability, MDPI, vol. 14(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14253-:d:1248462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.