IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1632-d323570.html
   My bibliography  Save this article

Submergence Tolerance in Rice: Review of Mechanism, Breeding and, Future Prospects

Author

Listed:
  • Yusuff Oladosu

    (Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), UPM, Serdang 43400, Malaysia)

  • Mohd Y. Rafii

    (Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), UPM, Serdang 43400, Malaysia
    Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), UPM, Serdang 43400, Malaysia)

  • Fatai Arolu

    (Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), UPM, Serdang 43400, Malaysia)

  • Samuel Chibuike Chukwu

    (Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), UPM, Serdang 43400, Malaysia)

  • Ismaila Muhammad

    (Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), UPM, Serdang 43400, Malaysia)

  • Isiaka Kareem

    (Department of Agronomy, University of Ilorin, Nigeria, P.M.B., Ilorin 1515, Nigeria)

  • Monsuru Adekunle Salisu

    (Department of Agriculture, Faculty Technical and Vocational, Sultan Idris Education University, Tanjung Malim 35900, Perak, Malaysia)

  • Ibrahim Wasiu Arolu

    (Kaduna State University, Faculty of Agriculture, Crop Science Department, P.M.B., Kaduna 2339, Nigeria)

Abstract

Flooding or submergence is one of the major environmental stressors affecting many man-made and natural ecosystems worldwide. The increase in the frequency and duration of heavy rainfall due to climate change has negatively affected plant growth and development, which eventually causes the death of plants if it persists for days. Most crops, especially rice, being a semi-aquatic plant, are greatly affected by flooding, leading to yield losses each year. Genetic variability in the plant response to flooding includes the quiescence scheme, which allows underwater endurance of a prolonged period, escape strategy through stem elongation, and alterations in plant architecture and metabolism. Investigating the mechanism for flooding survival in wild species and modern rice has yielded significant insight into developmental, physiological, and molecular strategies for submergence and waterlogging survival. Significant progress in the breeding of submergence tolerant rice varieties has been made during the last decade following the successful identification and mapping of a quantitative trait locus for submergence tolerance, designated as SUBMERGENCE 1 (SUB1) from the FR13A landrace. Using marker-assisted backcrossing, the SUB1 QTL (quantitative trait locus) has been incorporated into many elite varieties within a short time and with high precision as compared with conventional breeding methods. Despite the advancement in submergence tolerance, for future studies, there is a need for practical approaches exploring genome-wide association studies (GWA) and QTL in combination with specific tolerance traits, such as drought, salinity, disease and insect resistance.

Suggested Citation

  • Yusuff Oladosu & Mohd Y. Rafii & Fatai Arolu & Samuel Chibuike Chukwu & Ismaila Muhammad & Isiaka Kareem & Monsuru Adekunle Salisu & Ibrahim Wasiu Arolu, 2020. "Submergence Tolerance in Rice: Review of Mechanism, Breeding and, Future Prospects," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1632-:d:323570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1632/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1632/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kenong Xu & Xia Xu & Takeshi Fukao & Patrick Canlas & Reycel Maghirang-Rodriguez & Sigrid Heuer & Abdelbagi M. Ismail & Julia Bailey-Serres & Pamela C. Ronald & David J. Mackill, 2006. "Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice," Nature, Nature, vol. 442(7103), pages 705-708, August.
    2. Manzoor H. Dar & Ritadhi Chakravorty & Showkat A. Waza & Mayank Sharma & Najam W. Zaidi & Amrendra N. Singh & Umesh S. Singh & Abdelbagi M. Ismail, 2017. "Transforming rice cultivation in flood prone coastal Odisha to ensure food and economic security," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(4), pages 711-722, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Subramanian Radhesh Krishnan & Pandiyan Muthuramalingam & Arumugam Mohana Priya & Mani Iyer Prasanth & Krishnasamy Gopinath & Chakravarthi Mohan & Karthikeyan Muthusamy & Krishnaswamy Balamurugan & Ad, 2022. "Expressing OsiSAP8 , a Zinc-Finger Associated Protein Gene, Mitigates Stress Dynamics in Existing Elite Rice Varieties of the ‘Green Revolution’," Sustainability, MDPI, vol. 14(16), pages 1-29, August.
    2. Hemalatha Palanivel & Shipra Shah, 2021. "Unlocking the inherent potential of plant genetic resources: food security and climate adaptation strategy in Fiji and the Pacific," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14264-14323, October.
    3. Isnaini Isnaini & Yudhistira Nugraha & Niranjan Baisakh & Nono Carsono, 2023. "Toward Food Security in 2050: Gene Pyramiding for Climate-Smart Rice," Sustainability, MDPI, vol. 15(19), pages 1-35, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hifzur RAHMAN & Vijayalakshmi DAKSHINAMURTHI & Sasikala RAMASAMY & Sudha MANICKAM & Ashok Kumar KALIYAPERUMAL & Suchismita RAHA & Naresh PANNEERSELVAM & Valarmathi RAMANATHAN & Jagadeeshselvam NALLATH, 2018. "Introgression of submergence tolerance into CO 43, a popular rice variety of India, through marker-assisted backcross breeding," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 54(3), pages 101-108.
    2. Mariola Staniak & Ewa Szpunar-Krok & Anna Kocira, 2023. "Responses of Soybean to Selected Abiotic Stresses—Photoperiod, Temperature and Water," Agriculture, MDPI, vol. 13(1), pages 1-28, January.
    3. Taikui Zhang & Weichen Huang & Lin Zhang & De-Zhu Li & Ji Qi & Hong Ma, 2024. "Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    4. Kyle Emerick & Alain de Janvry & Elisabeth Sadoulet & Manzoor H. Dar, 2016. "Technological Innovations, Downside Risk, and the Modernization of Agriculture," American Economic Review, American Economic Association, vol. 106(6), pages 1537-1561, June.
    5. Emerick, Kyle, 2018. "Trading frictions in Indian village economies," Journal of Development Economics, Elsevier, vol. 132(C), pages 32-56.
    6. Xuelin Xie & Jingfang Shen, 2021. "Waterlogging Resistance Evaluation Index and Photosynthesis Characteristics Selection: Using Machine Learning Methods to Judge Poplar’s Waterlogging Resistance," Mathematics, MDPI, vol. 9(13), pages 1-19, July.
    7. Sayeda Sabrina Ali & Md. Raju Ahmad & Jalal Uddin Mohammad Shoaib & Mohammad Aliuzzaman Sheik & Mohammad Imam Hoshain & Rebecca L. Hall & Katrina A. Macintosh & Paul N. Williams, 2021. "Pandemic or Environmental Socio-Economic Stressors Which Have Greater Impact on Food Security in the Barishal Division of Bangladesh: Initial Perspectives from Agricultural Officers and Farmers," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    8. Isnaini Isnaini & Yudhistira Nugraha & Niranjan Baisakh & Nono Carsono, 2023. "Toward Food Security in 2050: Gene Pyramiding for Climate-Smart Rice," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
    9. Hongbo Li & Shenhao Wang & Sen Chai & Zhiquan Yang & Qiqi Zhang & Hongjia Xin & Yuanchao Xu & Shengnan Lin & Xinxiu Chen & Zhiwang Yao & Qingyong Yang & Zhangjun Fei & Sanwen Huang & Zhonghua Zhang, 2022. "Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Jian Sun & Guangchen Zhang & Zhibo Cui & Ximan Kong & Xiaoyu Yu & Rui Gui & Yuqing Han & Zhuan Li & Hong Lang & Yuchen Hua & Xuemin Zhang & Quan Xu & Liang Tang & Zhengjin Xu & Dianrong Ma & Wenfu Che, 2022. "Regain flood adaptation in rice through a 14-3-3 protein OsGF14h," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Swati Nayak & Muhammad Ashraful Habib & Kuntal Das & Saidul Islam & Sk Mosharaf Hossain & Biswajit Karmakar & Roberto Fritsche Neto & Sankalp Bhosale & Hans Bhardwaj & Sudhanshu Singh & Mohammad Rafiq, 2022. "Adoption Trend of Climate-Resilient Rice Varieties in Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-13, April.
    12. Hansen, James & Hellin, Jon & Rosenstock, Todd & Fisher, Eleanor & Cairns, Jill & Stirling, Clare & Lamanna, Christine & van Etten, Jacob & Rose, Alison & Campbell, Bruce, 2019. "Climate risk management and rural poverty reduction," Agricultural Systems, Elsevier, vol. 172(C), pages 28-46.
    13. Mubashar Hussain & Umar Niaz & Muhammad Bilal & Nauman Liaqat, 2018. "Phenotypic Response of Rice Genotypes Under Submergence Conditions at Seedling Stage," Current Investigations in Agriculture and Current Research, Lupine Publishers, LLC, vol. 5(4), pages 722-726, December.
    14. Goutam Das & Banshidhar Pradhan & Debendranath Bastia & Sanghamitra Samantaray & Debarchana Jena & Diptibala Rout & Paduranga Bhagwan Arsode & Vineeta Singh & Arup Kumar Mukherjee & Chander Mohan & Ra, 2022. "Pyramiding Submergence Tolerance and Three Bacterial Blight Resistance Genes in Popular Rice Variety Hasanta through Marker-Assisted Backcross Breeding," Agriculture, MDPI, vol. 12(11), pages 1-26, October.
    15. Agata Zubrycka & Charlene Dambire & Laura Dalle Carbonare & Gunjan Sharma & Tinne Boeckx & Kamal Swarup & Craig J. Sturrock & Brian S. Atkinson & Ranjan Swarup & Françoise Corbineau & Neil J. Oldham &, 2023. "ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Michalak Dorota & Wulf Erico, 2019. "Priority Areas of Poland’s Development in Line with EU Policy (Smart Specializations) – Poland’s Food Security and Climate Change," Journal of Intercultural Management, Sciendo, vol. 11(4), pages 158-182, December.
    17. Dar, Manzoor H. & Waza, Showkat A. & Nayak, Swati & Chakravorty, Ritadhi & Zaidi, Najam W. & Hossain, Mosharaf, 2020. "Gender focused training and knowledge enhances the adoption of climate resilient seeds," Technology in Society, Elsevier, vol. 63(C).
    18. Emerick, Kyle & De Janvry, Alain & Sadoulet, Elisabeth & Dar, Manzoor & Wiseman, Eleanor, 2020. "Private Input Suppliers as Information Agents for Technology Adoption in Agriculture," CEPR Discussion Papers 15584, C.E.P.R. Discussion Papers.
    19. Manzoor H. Dar & Dilruba A. Bano & Showkat A. Waza & Najam W. Zaidi & Asma Majid & Asif B. Shikari & M. Ashraf Ahangar & Mosharaf Hossain & Arvind Kumar & Uma S. Singh, 2021. "Abiotic Stress Tolerance-Progress and Pathways of Sustainable Rice Production," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    20. Daiqi Wang & Hongru Wang & Xiaomei Xu & Man Wang & Yahuan Wang & Hong Chen & Fei Ping & Huanhuan Zhong & Zhengkun Mu & Wantong Xie & Xiangyu Li & Jingbin Feng & Milan Zhang & Zhilan Fan & Tifeng Yang , 2023. "Two complementary genes in a presence-absence variation contribute to indica-japonica reproductive isolation in rice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1632-:d:323570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.