IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v162y2020i3d10.1007_s10584-020-02807-1.html
   My bibliography  Save this article

On the role of increased CO2 concentrations in enhancing the temporal clustering of heavy precipitation events across Europe

Author

Listed:
  • Zhiqi Yang

    (The University of Iowa)

  • Gabriele Villarini

    (The University of Iowa)

Abstract

This study examines the response of the clustering behavior in heavy precipitation events across Europe to increasing atmospheric CO2 concentrations. We focus on four large-scale climate modes [Arctic Oscillation (AO), North Atlantic Oscillation (NAO), East Atlantic (EA) pattern, and Scandinavia pattern (SCAND)] that have been found to play a significant role in controlling the occurrence of these events. We use a peak over threshold (POT) method to define daily heavy precipitation events and Cox regression as the modeling framework. We consider three experiments from the Coupled Model Intercomparison Project Phase 5 (CMIP5): (1) pre-industrial control run experiments (PI-control); (2) a 1%/year increase in CO2 from the CO2 concentration in PI control to quadrupling (1pctCO2); and (3) an instantaneous quadrupling of CO2, then holding it fixed (abrupt4 × CO2). We measure the effects of CO2 by examining whether the Cox regression coefficients in the CO2 experiments are significantly different from those in the PI control. We find that (1) the increases in CO2 are unlikely to lead to changes in the spatial patterns of relationships between climate modes and heavy precipitation; (2) the increases in CO2 are likely to lead to a strengthening of the relationship between the AO/SCAND and the occurrence of heavy precipitation events, while increases in CO2 have weaker effects on the role of NAO and EA; (3) the response to an abrupt increase in CO2 is generally stronger compared to a more gradual one; (4) the responses of the integrated vapor transport and 500-mb geopotential height to increasing CO2 provide a physical mechanism to explain the enhanced relationship between climate modes and clustering of heavy precipitation events.

Suggested Citation

  • Zhiqi Yang & Gabriele Villarini, 2020. "On the role of increased CO2 concentrations in enhancing the temporal clustering of heavy precipitation events across Europe," Climatic Change, Springer, vol. 162(3), pages 1455-1472, October.
  • Handle: RePEc:spr:climat:v:162:y:2020:i:3:d:10.1007_s10584-020-02807-1
    DOI: 10.1007/s10584-020-02807-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02807-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02807-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Erratum to: increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 517-518, October.
    2. Zhou M., 2001. "Understanding the Cox Regression Models With Time-Change Covariates," The American Statistician, American Statistical Association, vol. 55, pages 153-155, May.
    3. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    4. Wei Zhang & Gabriele Villarini, 2017. "Heavy precipitation is highly sensitive to the magnitude of future warming," Climatic Change, Springer, vol. 145(1), pages 249-257, November.
    5. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    6. Dim Coumou & Stefan Rahmstorf, 2012. "A decade of weather extremes," Nature Climate Change, Nature, vol. 2(7), pages 491-496, July.
    7. Kevin E. Trenberth & John T. Fasullo & Grant Branstator & Adam S. Phillips, 2014. "Seasonal aspects of the recent pause in surface warming," Nature Climate Change, Nature, vol. 4(10), pages 911-916, October.
    8. Wei Zhang & Gabriele Villarini & Michael Wehner, 2019. "Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures," Climatic Change, Springer, vol. 154(1), pages 257-271, May.
    9. E. M. Fischer & R. Knutti, 2016. "Observed heavy precipitation increase confirms theory and early models," Nature Climate Change, Nature, vol. 6(11), pages 986-991, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    2. Dominik Traxl & Niklas Boers & Aljoscha Rheinwalt & Bodo Bookhagen, 2021. "The role of cyclonic activity in tropical temperature-rainfall scaling," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Haoyang Du & Chen Zhou & Haoqing Tang & Xiaolong Jin & Dengshuai Chen & Penghui Jiang & Manchun Li, 2021. "Simulation and estimation of future precipitation changes in arid regions: a case study of Xinjiang, Northwest China," Climatic Change, Springer, vol. 167(3), pages 1-21, August.
    4. Sidney Michelini & Barbora Šedová & Jacob Schewe & Katja Frieler, 2023. "Extreme weather impacts do not improve conflict predictions in Africa," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
    5. Nkongho Ayuketang Arreyndip, 2021. "Identifying agricultural disaster risk zones for future climate actions," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-16, December.
    6. Clyde E. Goulden & Jerry Mead & Richard Horwitz & Munhtuya Goulden & Banzragch Nandintsetseg & Sabrina McCormick & Bazartseren Boldgiv & Peter S. Petraitis, 2016. "Interviews of Mongolian herders and high resolution precipitation data reveal an increase in short heavy rains and thunderstorm activity in semi-arid Mongolia," Climatic Change, Springer, vol. 136(2), pages 281-295, May.
    7. Haixin Liu & Anbing Zhang & Tao Jiang & Haitao Lv & Xinxia Liu & Hefeng Wang, 2016. "The Spatiotemporal Variation of Drought in the Beijing-Tianjin-Hebei Metropolitan Region (BTHMR) Based on the Modified TVDI," Sustainability, MDPI, vol. 8(12), pages 1-15, December.
    8. Xiaoting Sun & Qinghua Ding & Shih-Yu Simon Wang & Dániel Topál & Qingquan Li & Christopher Castro & Haiyan Teng & Rui Luo & Yihui Ding, 2022. "Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Michael Berlemann & Daniela Wenzel, 2018. "Precipitation and Economic Growth," CESifo Working Paper Series 7258, CESifo.
    10. Berlemann, Michael & Eurich, Marina, 2021. "Natural hazard risk and life satisfaction – Empirical evidence for hurricanes," Ecological Economics, Elsevier, vol. 190(C).
    11. Yuan-Chih Su & Bo-Jein Kuo, 2023. "Risk Assessment of Rice Damage Due to Heavy Rain in Taiwan," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    12. Michael Berlemann & Thi Xuyen Tran, 2020. "Climate-Related Hazards and Internal Migration Empirical Evidence for Rural Vietnam," Economics of Disasters and Climate Change, Springer, vol. 4(2), pages 385-409, July.
    13. Jinling Piao & Wen Chen & Jin-Soo Kim & Wen Zhou & Shangfeng Chen & Peng Hu & Xiaoqing Lan, 2023. "Future changes in rainy season characteristics over East China under continuous warming," Climatic Change, Springer, vol. 176(9), pages 1-21, September.
    14. Isnaini Isnaini & Yudhistira Nugraha & Niranjan Baisakh & Nono Carsono, 2023. "Toward Food Security in 2050: Gene Pyramiding for Climate-Smart Rice," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
    15. Kai Kornhuber & Corey Lesk & Carl F. Schleussner & Jonas Jägermeyr & Peter Pfleiderer & Radley M. Horton, 2023. "Risks of synchronized low yields are underestimated in climate and crop model projections," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Wei Zhang & Gabriele Villarini, 2017. "Heavy precipitation is highly sensitive to the magnitude of future warming," Climatic Change, Springer, vol. 145(1), pages 249-257, November.
    17. Wei Zhang & Gabriele Villarini & Michael Wehner, 2019. "Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures," Climatic Change, Springer, vol. 154(1), pages 257-271, May.
    18. Antonio Menéndez Suárez-Inclán & Cristina Allende-Prieto & Jorge Roces-García & Juan P. Rodríguez-Sánchez & Luis A. Sañudo-Fontaneda & Carlos Rey-Mahía & Felipe P. Álvarez-Rabanal, 2022. "Development of a Multicriteria Scheme for the Identification of Strategic Areas for SUDS Implementation: A Case Study from Gijón, Spain," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    19. Daniel Amoak & Isaac Luginaah & Gordon McBean, 2022. "Climate Change, Food Security, and Health: Harnessing Agroecology to Build Climate-Resilient Communities," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    20. Christian Unterberger, 2018. "How Flood Damages to Public Infrastructure Affect Municipal Budget Indicators," Economics of Disasters and Climate Change, Springer, vol. 2(1), pages 5-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:162:y:2020:i:3:d:10.1007_s10584-020-02807-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.