IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13633-d1238235.html
   My bibliography  Save this article

Advancing Sustainable Energy Transition: Blockchain and Peer-to-Peer Energy Trading in India’s Green Revolution

Author

Listed:
  • Jhanvi Gupta

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India)

  • Sanskar Jain

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India)

  • Suprava Chakraborty

    (TIFAC-CORE, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India)

  • Vladimir Panchenko

    (Department of Theoretical and Applied Mechanics, Russian University of Transport, 127994 Moscow, Russia)

  • Alexandr Smirnov

    (Department of Agricultural, Federal State Budgetary Scientific Institution, “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia)

  • Igor Yudaev

    (Energy Department, Kuban State Agrarian University, 350044 Krasnodar, Russia)

Abstract

Advancing the sustainable energy transition is a major need in nations that are constantly evolving and developing in terms of their energy economy. India has been chosen for the purpose of analysis due to the heterogenous nature of its polity, topographies, infrastructural capabilities and diverse framework. In accordance with the sustainable development goals proposed by the UN, a metamorphosis is observed within the renewable energy sector of the nation. Blockchain technology that facilitates a transparent transition is incorporated on various upcoming platforms. This is backed up by peer-to-peer trading of energy providing a prosumer with an autonomous environment. The goal of this paper is to highlight the struggles and challenges faced by the energy sector as it takes up unconventional and non-traditional approaches within the country. It also aims to discover potential ways that would help a nation like India facilitate such a transition by studying its ongoing trends. The need is eminent for a practical study that is specific to a developing nation like India in terms of P2P energy trading enabled by blockchain technology to promote the use of open-sourced electricity and achieve a decentralized system.

Suggested Citation

  • Jhanvi Gupta & Sanskar Jain & Suprava Chakraborty & Vladimir Panchenko & Alexandr Smirnov & Igor Yudaev, 2023. "Advancing Sustainable Energy Transition: Blockchain and Peer-to-Peer Energy Trading in India’s Green Revolution," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13633-:d:1238235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asaad, Mohammad & Ahmad, Furkan & Alam, Mohammad Saad & Sarfraz, Mohammad, 2021. "Smart grid and Indian experience: A review," Resources Policy, Elsevier, vol. 74(C).
    2. Fahim Muntasir & Anusheel Chapagain & Kishan Maharjan & Mirza Jabbar Aziz Baig & Mohsin Jamil & Ashraf Ali Khan, 2023. "Developing an Appropriate Energy Trading Algorithm and Techno-Economic Analysis between Peer-to-Peer within a Partly Independent Microgrid," Energies, MDPI, vol. 16(3), pages 1-21, February.
    3. Ableitner, Liliane & Tiefenbeck, Verena & Meeuw, Arne & Wörner, Anselma & Fleisch, Elgar & Wortmann, Felix, 2020. "User behavior in a real-world peer-to-peer electricity market," Applied Energy, Elsevier, vol. 270(C).
    4. Gozgor, Giray & Lau, Chi Keung Marco & Lu, Zhou, 2018. "Energy consumption and economic growth: New evidence from the OECD countries," Energy, Elsevier, vol. 153(C), pages 27-34.
    5. Zhou, Adrian & Thomson, Elspeth, 2009. "The development of biofuels in Asia," Applied Energy, Elsevier, vol. 86(Supplemen), pages 11-20, November.
    6. Bhattacharya, S.C. & Jana, Chinmoy, 2009. "Renewable energy in India: Historical developments and prospects," Energy, Elsevier, vol. 34(8), pages 981-991.
    7. Asokan, P. & Saxena, Mohini & Asolekar, Shyam R., 2005. "Coal combustion residues—environmental implications and recycling potentials," Resources, Conservation & Recycling, Elsevier, vol. 43(3), pages 239-262.
    8. Nibedita, Barsha & Irfan, Mohd, 2022. "Analyzing the asymmetric impacts of renewables on wholesale electricity price: Empirical evidence from the Indian electricity market," Renewable Energy, Elsevier, vol. 194(C), pages 538-551.
    9. Anugu Amarender Reddy & Anindita Sarkar & Yumiko Onishi, 2022. "Assessing the Outreach of Targeted Development Programmes—A Case Study from a South Indian Village," Land, MDPI, vol. 11(7), pages 1-22, July.
    10. Koščak Kolin, Sonja & Karasalihović Sedlar, Daria & Kurevija, Tomislav, 2021. "Relationship between electricity and economic growth for long-term periods: New possibilities for energy prediction," Energy, Elsevier, vol. 228(C).
    11. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    12. Chang, Shuchih Ernest & Chen, Yi-Chian & Lu, Ming-Fang, 2019. "Supply chain re-engineering using blockchain technology: A case of smart contract based tracking process," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 1-11.
    13. Lin, Boqiang & Zhu, Runqing & Raza, Muhammad Yousaf, 2022. "Fuel substitution and environmental sustainability in India: Perspectives of technical progress," Energy, Elsevier, vol. 261(PB).
    14. Moharil, Ravindra M. & Kulkarni, Prakash S., 2009. "A case study of solar photovoltaic power system at Sagardeep Island, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 673-681, April.
    15. Komla M. Agudze & Favour Olarewaju, 2022. "The growth impact of trade openness: A comparative analysis of the USA and China," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 31(1), pages 23-45, January.
    16. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Morstyn, Thomas & McCulloch, Malcolm D. & Poor, H. Vincent & Wood, Kristin L., 2019. "A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid," Applied Energy, Elsevier, vol. 243(C), pages 10-20.
    17. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    2. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Meritxell Domènech Monfort & César De Jesús & Natapon Wanapinit & Niklas Hartmann, 2022. "A Review of Peer-to-Peer Energy Trading with Standard Terminology Proposal and a Techno-Economic Characterisation Matrix," Energies, MDPI, vol. 15(23), pages 1-29, November.
    4. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    5. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    6. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.
    7. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    8. Adewole, Ayooluwa & Shipworth, Michelle & Lemaire, Xavier & Sanderson, Danielle, 2023. "Peer-to-Peer energy trading, independence aspirations and financial benefits among Nigerian households," Energy Policy, Elsevier, vol. 174(C).
    9. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    10. Guerrero, Jaysson & Gebbran, Daniel & Mhanna, Sleiman & Chapman, Archie C. & Verbič, Gregor, 2020. "Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    11. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    12. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    14. Ableitner, Liliane & Tiefenbeck, Verena & Meeuw, Arne & Wörner, Anselma & Fleisch, Elgar & Wortmann, Felix, 2020. "User behavior in a real-world peer-to-peer electricity market," Applied Energy, Elsevier, vol. 270(C).
    15. Hui Huang & Shilin Nie & Jin Lin & Yuanyuan Wang & Jun Dong, 2020. "Optimization of Peer-to-Peer Power Trading in a Microgrid with Distributed PV and Battery Energy Storage Systems," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    16. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    17. Michael J. Fell & Alexandra Schneiders & David Shipworth, 2019. "Consumer Demand for Blockchain-Enabled Peer-to-Peer Electricity Trading in the United Kingdom: An Online Survey Experiment," Energies, MDPI, vol. 12(20), pages 1-25, October.
    18. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    19. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    20. Maarten Evens & Patricia Ercoli & Alessia Arteconi, 2023. "Blockchain-Enabled Microgrids: Toward Peer-to-Peer Energy Trading and Flexible Demand Management," Energies, MDPI, vol. 16(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13633-:d:1238235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.