IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12286-d1215491.html
   My bibliography  Save this article

Combining Data-Driven and Model-Driven Approaches for Optimal Distributed Control of Standalone Microgrid

Author

Listed:
  • Parvaiz Ahmad Ahangar

    (Department of Electrical Engineering, National Institute of Technology, Srinagar 190006, Jammu and Kashmir, India)

  • Shameem Ahmad Lone

    (Department of Electrical Engineering, National Institute of Technology, Srinagar 190006, Jammu and Kashmir, India)

  • Neeraj Gupta

    (Department of Electrical Engineering, National Institute of Technology, Srinagar 190006, Jammu and Kashmir, India)

Abstract

This paper focuses on the comprehensive restoration of both voltage and frequency in a standalone microgrid (SAMG). In a SAMG, the power balance is achieved through traditional methods such as droop control for power sharing among distributed generators (DGs). However, when such microgrids (MGs) are subjected to perturbations coming from stochastic renewables, the frequency and voltage parameters deviate from their specified values. In this paper, a novel hybrid-type consensus-based distributed controller is proposed for voltage and frequency restoration. Data-based communication is ensured among the DGs for controlling voltage and frequency parameters. Different parameters such as voltage, frequency, and active and reactive power converge successfully to their nominal values using the proposed algorithms, thereby ensuring smooth operation of inverter-dominated DGs. Additionally, the machine-learning-based long short-term memory (LSTM) algorithm is implemented for renewable power forecasting using historical data from the proposed location for visualising the insolation profile. The effectiveness of our approach is demonstrated through a SAMG, which consists of four inverters, showing that the proposed approach can improve system stability, increase efficiency and reliability, and reduce costs compared to traditional methods. The complete study is performed in Python and MATLAB environments. Our results highlight the potential of data-driven approaches to revolutionise power system operation and control.

Suggested Citation

  • Parvaiz Ahmad Ahangar & Shameem Ahmad Lone & Neeraj Gupta, 2023. "Combining Data-Driven and Model-Driven Approaches for Optimal Distributed Control of Standalone Microgrid," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12286-:d:1215491
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12286/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12286/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nguyen, Hoang-Phuong & Baraldi, Piero & Zio, Enrico, 2021. "Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants," Applied Energy, Elsevier, vol. 283(C).
    2. Saeid Esmaeili & Amjad Anvari-Moghaddam & Shahram Jadid, 2019. "Optimal Operational Scheduling of Reconfigurable Multi-Microgrids Considering Energy Storage Systems," Energies, MDPI, vol. 12(9), pages 1-23, May.
    3. Hou, Qingchun & Zhang, Ning & Du, Ershun & Miao, Miao & Peng, Fei & Kang, Chongqing, 2019. "Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China," Applied Energy, Elsevier, vol. 242(C), pages 205-215.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gökgöz, Fazıl & Yücel, Öykü, 2025. "Measuring the long-term impact of wind, run-of-river, solar renewable energy alternatives on market clearing prices," Renewable Energy, Elsevier, vol. 241(C).
    2. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    3. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    4. Homeyra Akter & Harun Or Rashid Howlader & Ahmed Y. Saber & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2021. "Optimal Sizing of Hybrid Microgrid in a Remote Island Considering Advanced Direct Load Control for Demand Response and Low Carbon Emission," Energies, MDPI, vol. 14(22), pages 1-19, November.
    5. Xiao, Xiao & Song, Meiqi & Liu, Xiaojing, 2025. "A reliable and adaptive prediction framework for nuclear power plant system through an improved Transformer model and Bayesian uncertainty analysis," Reliability Engineering and System Safety, Elsevier, vol. 261(C).
    6. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).
    7. Pierre Cayet & Arash Farnoosh, 2022. "A robust structural electric system model with significant share of intermittent renewables under auto-correlated residual demand," EconomiX Working Papers 2022-6, University of Paris Nanterre, EconomiX.
    8. Sepúlveda-Mora, Sergio B. & Hegedus, Steven, 2021. "Making the case for time-of-use electric rates to boost the value of battery storage in commercial buildings with grid connected PV systems," Energy, Elsevier, vol. 218(C).
    9. Redelinghuys, L.G. & McGregor, C., 2024. "Multi-objective techno-economic optimisation of a Carnot battery application in a parabolic trough concentrating solar power plant," Applied Energy, Elsevier, vol. 376(PB).
    10. Gholami, M. & Sanjari, M.J., 2021. "Multiobjective energy management in battery-integrated home energy systems," Renewable Energy, Elsevier, vol. 177(C), pages 967-975.
    11. Yu, Haibo & Chang, Ling & Yang, Minghan & Chen, Shuai & Li, Huijuan & Wang, Jianye, 2025. "Time series modeling and forecasting with feature decomposition and interaction for prognostics and health management in nuclear power plant," Energy, Elsevier, vol. 324(C).
    12. Frate, Guido Francesco & Baccioli, Andrea & Bernardini, Leonardo & Ferrari, Lorenzo, 2022. "Assessment of the off-design performance of a solar thermally-integrated pumped-thermal energy storage," Renewable Energy, Elsevier, vol. 201(P1), pages 636-650.
    13. Joseph Nyangon & Ruth Akintunde, 2024. "Principal component analysis of day‐ahead electricity price forecasting in CAISO and its implications for highly integrated renewable energy markets," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(1), January.
    14. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    15. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    16. Chul-Sang Hwang & Young-Woo Youn & Heung-Kwan Choi & Tae-Jin Kim, 2025. "Converter-Based Power Line Emulators for Testing Grid-Forming Converters Under Various Grid Strength Conditions," Sustainability, MDPI, vol. 17(15), pages 1-18, July.
    17. Kai Jiang & Nian Liu & Kunyu Wang & Yubing Chen & Jianxiao Wang & Yu Liu, 2025. "Spatiotemporal assessment of renewable adequacy during diverse extreme weather events in China," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    18. Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).
    19. Qiao, Hongna & Yang, Bin & Yu, Xiaohui, 2025. "Development of an efficient cross-scale model for working fluid selection of Rankine-based Carnot battery based on group contribution method," Renewable Energy, Elsevier, vol. 238(C).
    20. Wiesheu, Michael & Rutešić, Luka & Shukhobodskiy, Alexander Alexandrovich & Pogarskaia, Tatiana & Zaitcev, Aleksandr & Colantuono, Giuseppe, 2021. "RED WoLF hybrid storage system: Adaptation of algorithm and analysis of performance in residential dwellings," Renewable Energy, Elsevier, vol. 179(C), pages 1036-1048.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12286-:d:1215491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.