IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11876-d1208892.html
   My bibliography  Save this article

A Model Assembly Approach of Planning Urban–Rural Transportation Network: A Case Study of Jiangxia District, Wuhan, China

Author

Listed:
  • Hong Xu

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
    Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Jin Zhao

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Xincan Yu

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Xiaoxia Mei

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Xinle Zhang

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Chuanjie Yan

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China)

Abstract

Planning transportation networks between urban and rural areas is of crucial importance for the integration of urban and rural development, for socio-economic connectivity, and for sustainable growth. The study offers a model assembly approach in order to logically plan an integrated urban–rural transportation network that may support the coordinated development of its living–production–ecological space. Within this approach, the ordinary least squares (OLS) linear regression analysis method is used to investigate the correlation between urban and rural areas of a transportation network and the influencing factors in the living–production–ecological space so as to objectively analyze their degree of influence. These factors are size of town, urban and rural settlements, life services, supporting transportation facilities, trunk layout, external transport links, cargo hubs, logistics and transportation, enterprise distribution, agricultural production, terrain, distribution of water systems, tourism resources, heritage preservation, and ecological protection. The analytic hierarchy method is used to assign weight to the urban and rural transportation network planning impact index system. As a result, a transportation network planning decision hierarchy model is implemented to identify suitable areas for urban and rural transportation network construction and to provide guidance and reference for planning. Jiangxia District, Wuhan, China is selected as the study area to verify the feasibility and effectiveness of the model. The findings indicate that the influencing factors of urban and rural industrial and ecological space have a significant impact on the transportation network in the research area. Planning should prioritize optimizing the central region’s transportation network structure and enhancing traffic flow between urban and rural communities, which is effectively in line with the current reality. The suggested approach is helpful in establishing case-study-specific planning and development strategies of urban and rural integrated transportation networks in the age of big data, as well as in balancing these influencing factors in living, production, and ecological spaces when planning an integrated urban and rural transportation network.

Suggested Citation

  • Hong Xu & Jin Zhao & Xincan Yu & Xiaoxia Mei & Xinle Zhang & Chuanjie Yan, 2023. "A Model Assembly Approach of Planning Urban–Rural Transportation Network: A Case Study of Jiangxia District, Wuhan, China," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11876-:d:1208892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suwastika Naidu & Anand Chand, 2012. "Barriers to micro, small and medium enterprise growth in the Fiji Islands: an empirical estimation using OLS regression model," International Journal of Entrepreneurship and Small Business, Inderscience Enterprises Ltd, vol. 16(2), pages 147-163.
    2. Małgorzata Dudzińska & Stanisław Bacior & Barbara Prus, 2019. "Motorway Route Planning with Regarding the Adverse Effects on Agricultural Production Space," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    3. Mustafa Hamurcu & Tamer Eren, 2020. "Strategic Planning Based on Sustainability for Urban Transportation: An Application to Decision-Making," Sustainability, MDPI, vol. 12(9), pages 1-24, April.
    4. Madjid Tavana & Mehdi Soltanifar & Francisco J. Santos-Arteaga, 2023. "Analytical hierarchy process: revolution and evolution," Annals of Operations Research, Springer, vol. 326(2), pages 879-907, July.
    5. Fu Wang & Manqing Ye & Hongbin Zhu & Dengjun Gu, 2022. "Optimization Method for Conventional Bus Stop Placement and the Bus Line Network Based on the Voronoi Diagram," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    6. Geniaux, Ghislain & Martinetti, Davide, 2018. "A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 74-85.
    7. Piotr Prus & Marek Sikora, 2021. "The Impact of Transport Infrastructure on the Sustainable Development of the Region—Case Study," Agriculture, MDPI, vol. 11(4), pages 1-15, March.
    8. Yu, Haitao & Jiao, Junfeng & Houston, Eric & Peng, Zhong-Ren, 2018. "Evaluating the relationship between rail transit and industrial agglomeration: An observation from the Dallas-fort worth region, TX," Journal of Transport Geography, Elsevier, vol. 67(C), pages 33-52.
    9. Zhaoyang Cai & Jianwei Yan, 2018. "The planning and design of road network structure in urban railway transit hub areas," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(3), pages 198-203.
    10. Ng, Choy Peng & Law, Teik Hua & Wong, Shaw Voon & Kulanthayan, S., 2017. "Relative improvements in road mobility as compared to improvements in road accessibility and economic growth: A cross-country analysis," Transport Policy, Elsevier, vol. 60(C), pages 24-33.
    11. Shushan Chai & Qinghuai Liang & Simin Zhong, 2019. "Design of Urban Rail Transit Network Constrained by Urban Road Network, Trips and Land-Use Characteristics," Sustainability, MDPI, vol. 11(21), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaros³aw Brodny & Magdalena Tutak, 2023. "The level of implementing sustainable development goal "Industry, innovation and infrastructure" of Agenda 2030 in the European Union countries: Application of MCDM methods," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 47-102, March.
    2. Xu-Hui Li & Lin Huang & Qiang Li & Hu-Chen Liu, 2020. "Passenger Satisfaction Evaluation of Public Transportation Using Pythagorean Fuzzy MULTIMOORA Method under Large Group Environment," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    3. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    4. Bingquan Liu & Boyang Nie & Yakun Wang & Xuemin Han & Yongqing Li, 2023. "Does New Infrastructure Affect Regional Carbon Intensity? Empirical Evidence from China," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    5. Gabriella Vitorino Guimarães & Tálita Floriano Santos & Vicente Aprigliano Fernandes & Jorge Eliécer Córdoba Maquilón & Marcelino Aurélio Vieira da Silva, 2020. "Assessment for the Social Sustainability and Equity under the Perspective of Accessibility to Jobs," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    6. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    7. Hajime Seya & Kay W. Axhausen & Makoto Chikaraishi, 2020. "Spatial unconditional quantile regression: application to Japanese parking price data," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 65(2), pages 351-402, October.
    8. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Sangwon Lee & Jennifer M. First, 2023. "Investigation of the Microenvironment, Land Cover Characteristics, and Social Vulnerability of Heat-Vulnerable Bus Stops in Knoxville, Tennessee," Sustainability, MDPI, vol. 15(14), pages 1-12, July.
    10. Jianyi Li & Douglas Webster & Jianming Cai & Larissa Muller, 2019. "Innovation Clusters Revisited: On Dimensions of Agglomeration, Institution, and Built-Environment," Sustainability, MDPI, vol. 11(12), pages 1-15, June.
    11. Priscila Celebrini de Oliveira Campos & Tainá da Silva Rocha Paz & Letícia Lenz & Yangzi Qiu & Camila Nascimento Alves & Ana Paula Roem Simoni & José Carlos Cesar Amorim & Gilson Brito Alves Lima & Ma, 2020. "Multi-Criteria Decision Method for Sustainable Watercourse Management in Urban Areas," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    12. Baiqing Sun & Ramadhan Kauzen, 2023. "The Impact of Port Infrastructure and Economic Growth in Tanzania: Adopting a Structural Equation Modeling Approach," SAGE Open, , vol. 13(1), pages 21582440221, January.
    13. Liao, Maolin & Zhang, Ze & Jia, Jin & Xiong, Jiao & Han, Mengyao, 2022. "Mapping China's photovoltaic power geographies: Spatial-temporal evolution, provincial competition and low-carbon transition," Renewable Energy, Elsevier, vol. 191(C), pages 251-260.
    14. Wenhui Zeng & Jiayuan Fan & Zhichao Ren & Xiaoyu Liu & Shuang Lv & Yuqian Cao & Xiao Xu & Junyong Liu, 2023. "Economic Evaluation Method of Modern Power Transmission System Based on Improved Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Best-Worst Method-Anti-Entropy Weight," Energies, MDPI, vol. 16(21), pages 1-21, October.
    15. Nithin Isaac & Akshay K. Saha, 2023. "A Review of the Optimization Strategies and Methods Used to Locate Hydrogen Fuel Refueling Stations," Energies, MDPI, vol. 16(5), pages 1-16, February.
    16. Prakash Kumar Sarangi & Akhilesh Kumar Singh & Rajesh Kumar Srivastava & Vijai Kumar Gupta, 2023. "Recent Progress and Future Perspectives for Zero Agriculture Waste Technologies: Pineapple Waste as a Case Study," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    17. Suwastika Naidu & Anand Chand, 2014. "Exploring the relationship between freedom from corruption and business governance in the Oceania region," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3489-3509, November.
    18. Sławomira Hajduk, 2021. "Multi-Criteria Analysis in the Decision-Making Approach for the Linear Ordering of Urban Transport Based on TOPSIS Technique," Energies, MDPI, vol. 15(1), pages 1-30, December.
    19. Alessio Baldassarre & Danilo Carullo & Paolo Di Caro & Elisa Fusco & Pasquale Giacobbe & Carlo Orecchia, 2023. "Bilateral Regional Trade Flows in Italy: an Origin-Destination-Commodity GWR-SAR approach," Working Papers wp2023-18, Ministry of Economy and Finance, Department of Finance.
    20. Jie Su & Bo Zhou & Yuanpei Liao & Chaoshen Wang & Tian Feng, 2022. "Impact Mechanism of the Urban Network on Carbon Emissions in Rapidly Developing Regions: Example of 47 Cities in Southwest China," Land, MDPI, vol. 11(4), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11876-:d:1208892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.