IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10564-d1186944.html
   My bibliography  Save this article

A Grid-Connected Optimal Hybrid PV-BES System Sizing for Malaysian Commercial Buildings

Author

Listed:
  • Jahangir Hossain

    (Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Melaka 76100, Malaysia)

  • Aida. F. A. Kadir

    (Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Melaka 76100, Malaysia)

  • Hussain Shareef

    (Department of Electrical Engineering, United Arab Emirates University, Al-Ain 15551, United Arab Emirates)

  • Rampelli Manojkumar

    (Department of Electrical and Electronics, BVRIT HYDERABAD College of Engineering for Women, Hyderabad 500090, India)

  • Nagham Saeed

    (School of Computing and Engineering, University of West London, London W5 5RF, UK)

  • Ainain. N. Hanafi

    (Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Melaka 76100, Malaysia)

Abstract

In this article, the optimal sizing of hybrid solar photovoltaic and battery energy storage systems is evaluated with respect to rooftop space and feed-in tariff rates. The battery scheduling is performed using a proposed rule-based energy management strategy. The rules are formulated based on the demand limit, PV export power limit, and state of charge of the battery. Furthermore, optimization modeling with initial choices of parameters and constraints in terms of solar photovoltaic and battery energy storage capabilities is developed to minimize the total net present cost. The hourly values of solar irradiance, air temperature, electrical loads, and electricity rates are considered the inputs of the optimization process. The optimization results are achieved using particle swarm optimization and validated through an uncertainty analysis. It is observed that an optimal photovoltaic and battery energy storage system can reduce the cost of electricity by 12.33%, including the sale of 5944.029 kWh of electricity to the grid. Furthermore, energy consumption, peak demand, and greenhouse gas emissions are reduced by 13.71%, 5.85%, and 62.59%, respectively. A comprehensive analysis between the variable and fixed data for the load, energy from PV, batteries, and the grid, and costs demonstrates that the optimal sizing of photovoltaic and battery energy storage systems with the best mix of energy from PV, batteries, and the grid provides the optimal solution for the proposed configuration.

Suggested Citation

  • Jahangir Hossain & Aida. F. A. Kadir & Hussain Shareef & Rampelli Manojkumar & Nagham Saeed & Ainain. N. Hanafi, 2023. "A Grid-Connected Optimal Hybrid PV-BES System Sizing for Malaysian Commercial Buildings," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10564-:d:1186944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imene Khenissi & Tawfik Guesmi & Ismail Marouani & Badr M. Alshammari & Khalid Alqunun & Saleh Albadran & Salem Rahmani & Rafik Neji, 2023. "Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
    2. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Zaman, Forhad & Guerrero, Josep M., 2019. "Energy scheduling of community microgrid with battery cost using particle swarm optimisation," Applied Energy, Elsevier, vol. 254(C).
    3. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability," Applied Energy, Elsevier, vol. 113(C), pages 1162-1170.
    4. Sadeghi, Delnia & Ahmadi, Seyed Ehsan & Amiri, Nima & Satinder, & Marzband, Mousa & Abusorrah, Abdullah & Rawa, Muhyaddin, 2022. "Designing, optimizing and comparing distributed generation technologies as a substitute system for reducing life cycle costs, CO2 emissions, and power losses in residential buildings," Energy, Elsevier, vol. 253(C).
    5. Mohammad Hossein Fouladfar & Nagham Saeed & Mousa Marzband & Giuseppe Franchini, 2021. "Home-Microgrid Energy Management Strategy Considering EV’s Participation in DR," Energies, MDPI, vol. 14(18), pages 1-12, September.
    6. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).
    7. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    8. Jahangir Hossain & Aida. F. A. Kadir & Ainain. N. Hanafi & Hussain Shareef & Tamer Khatib & Kyairul. A. Baharin & Mohamad. F. Sulaima, 2023. "A Review on Optimal Energy Management in Commercial Buildings," Energies, MDPI, vol. 16(4), pages 1-40, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuan & Wang, Jiangjiang & Li, Yuxin & Wei, Changqi, 2023. "A collaborative management strategy for multi-objective optimization of sustainable distributed energy system considering cloud energy storage," Energy, Elsevier, vol. 280(C).
    2. Ouédraogo, S. & Faggianelli, G.A. & Notton, G. & Duchaud, J.L. & Voyant, C., 2022. "Impact of electricity tariffs and energy management strategies on PV/Battery microgrid performances," Renewable Energy, Elsevier, vol. 199(C), pages 816-825.
    3. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    4. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    5. Monteiro, Raul V.A. & Guimarães, Geraldo C. & Silva, Fernando Bento & da Silva Teixeira, Raoni F. & Carvalho, Bismarck C. & Finazzi, Antônio de P. & de Vasconcellos, Arnulfo B., 2018. "A medium-term analysis of the reduction in technical losses on distribution systems with variable demand using artificial neural networks: An Electrical Energy Storage approach," Energy, Elsevier, vol. 164(C), pages 1216-1228.
    6. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    7. Tao Xu & He Meng & Jie Zhu & Wei Wei & He Zhao & Han Yang & Zijin Li & Yuhan Wu, 2021. "Optimal Capacity Allocation of Energy Storage in Distribution Networks Considering Active/Reactive Coordination," Energies, MDPI, vol. 14(6), pages 1-24, March.
    8. Wagner A. Vilela Junior & Antonio P. Coimbra & Gabriel A. Wainer & Joao Caetano Neto & Jose A. G. Cararo & Marcio R. C. Reis & Paulo V. Santos & Wesley P. Calixto, 2021. "Analysis and Adequacy Methodology for Voltage Violations in Distribution Power Grid," Energies, MDPI, vol. 14(14), pages 1-21, July.
    9. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    10. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    11. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    12. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    13. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Md Shafiul Alam & Fahad Saleh Al-Ismail & Mohammad Ali Abido, 2021. "PV/Wind-Integrated Low-Inertia System Frequency Control: PSO-Optimized Fractional-Order PI-Based SMES Approach," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    15. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    16. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    17. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    18. Morteza Nazari-Heris & Atefeh Tamaskani Esfehankalateh & Pouya Ifaei, 2023. "Hybrid Energy Systems for Buildings: A Techno-Economic-Enviro Systematic Review," Energies, MDPI, vol. 16(12), pages 1-15, June.
    19. Collath, Nils & Cornejo, Martin & Engwerth, Veronika & Hesse, Holger & Jossen, Andreas, 2023. "Increasing the lifetime profitability of battery energy storage systems through aging aware operation," Applied Energy, Elsevier, vol. 348(C).
    20. Baigali Erdenebat & Naomitsu Urasaki & Sergelen Byambaa, 2022. "A Strategy for Grid-Connected PV-Battery System of Mongolian Ger," Energies, MDPI, vol. 15(5), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10564-:d:1186944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.