IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10218-d1181083.html
   My bibliography  Save this article

Action Plan Focused on Electric Mobility (APOEM): A Tool for Assessment of the Potential Environmental Benefits of Urban Mobility

Author

Listed:
  • Victor Hugo Souza De Abreu

    (Program of Transportation Engineering, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Technology Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, Brazil)

  • Márcio de Almeida D’Agosto

    (Program of Transportation Engineering, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Technology Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, Brazil)

  • Ana Carolina Maia Angelo

    (Production Engineering Department, Fluminense Federal University, Volta Redonda 27255-125, Brazil)

  • Lino Guimarães Marujo

    (Program of Transportation Engineering, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Technology Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, Brazil)

  • Pedro José Pires Carneiro

    (Program of Transportation Engineering, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Technology Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, Brazil)

Abstract

The promotion of electric mobility has the potential to reduce several impacts of the road transport sector, such as increased emissions of greenhouse gas (GHG) and air pollutants and natural resource depletion. As such, decision makers and other stakeholders around the world have invested significant efforts in the transition to sustainable urban mobility based on the use of electric vehicles. However, there are few studies that investigate the potential benefits of electric mobility in all its facets; i.e., most focus on analyzing the benefits of replacing conventional cars while leaving aside other means of transportation with greater use and, consequently, higher emissions, such as, primarily, public transport and freight transport vehicles. Thus, this study aims to develop an action plan focused on electric mobility—APOEM, which stipulates gradual implementation steps in a time horizon of 5 years. For this purpose, a city with potential for electric mobility implementation called Atibaia, in the countryside of the State of São Paulo, in Brazil, is investigated. The results show that, in an ambitious scenario of electric vehicle deployment in the City of Atibaia, which presents energy supply compatible with demand, it would be possible to reduce a total of 30,788.70 tons of GHG in 5 years, and, as for emissions of air pollutants, it would be possible to reduce 140.38 tons of CO, 36.38 tons of NMHC, 1.58 tons of RCHO, 130.20 tons of NO x , 3.54 tons of MP and 0.75 tons of SO 2 in 5 years. It is also worth noting that, in order for electrification to generate a greater contribution to the environment, it is necessary that electric mobility be generated from renewable energy sources.

Suggested Citation

  • Victor Hugo Souza De Abreu & Márcio de Almeida D’Agosto & Ana Carolina Maia Angelo & Lino Guimarães Marujo & Pedro José Pires Carneiro, 2023. "Action Plan Focused on Electric Mobility (APOEM): A Tool for Assessment of the Potential Environmental Benefits of Urban Mobility," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10218-:d:1181083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarmad Zaman Rajper & Johan Albrecht, 2020. "Prospects of Electric Vehicles in the Developing Countries: A Literature Review," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    2. Amela Ajanovic & Marina Siebenhofer & Reinhard Haas, 2021. "Electric Mobility in Cities: The Case of Vienna," Energies, MDPI, vol. 14(1), pages 1-18, January.
    3. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    4. Biresselioglu, Mehmet Efe & Demirbag Kaplan, Melike & Yilmaz, Barbara Katharina, 2018. "Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 1-13.
    5. Walter Leal Filho & Ismaila Rimi Abubakar & Richard Kotter & Thomas Skou Grindsted & Abdul-Lateef Balogun & Amanda Lange Salvia & Yusuf A. Aina & Franziska Wolf, 2021. "Framing Electric Mobility for Urban Sustainability in a Circular Economy Context: An Overview of the Literature," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duc Nguyen Huu & Van Nguyen Ngoc, 2021. "Analysis Study of Current Transportation Status in Vietnam’s Urban Traffic and the Transition to Electric Two-Wheelers Mobility," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    2. Austmann, Leonhard M., 2021. "Drivers of the electric vehicle market: A systematic literature review of empirical studies," Finance Research Letters, Elsevier, vol. 41(C).
    3. Blanka Tundys & Tomasz Wiśniewski, 2023. "Smart Mobility for Smart Cities—Electromobility Solution Analysis and Development Directions," Energies, MDPI, vol. 16(4), pages 1-20, February.
    4. Brückmann, Gracia, 2022. "Test-drives & information might not boost actual battery electric vehicle uptake?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 204-218.
    5. K. Arunprasath & S. Bathrinath & R. K. A. Bhalaji & Koppiahraj Karuppiah & Anish Nair, 2023. "An integrated approach to modelling of barriers in implementation of cellular manufacturing systems in production industries," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1370-1378, August.
    6. Kamile Petrauskiene & Jolanta Dvarioniene & Giedrius Kaveckis & Daina Kliaugaite & Julie Chenadec & Leonie Hehn & Berta Pérez & Claudio Bordi & Giorgio Scavino & Andrea Vignoli & Michael Erman, 2020. "Situation Analysis of Policies for Electric Mobility Development: Experience from Five European Regions," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    7. Gabriella Vitorino Guimarães & Tálita Floriano Santos & Vicente Aprigliano Fernandes & Jorge Eliécer Córdoba Maquilón & Marcelino Aurélio Vieira da Silva, 2020. "Assessment for the Social Sustainability and Equity under the Perspective of Accessibility to Jobs," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    8. Xin-Wei Li & Hong-Zhi Miao, 2023. "How to Incorporate Autonomous Vehicles into the Carbon Neutrality Framework of China: Legal and Policy Perspectives," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    9. Thanh Tung Ha & Thanh Chuong Nguyen & Sy Sua Tu & Minh Hieu Nguyen, 2023. "Investigation of Influential Factors of Intention to Adopt Electric Vehicles for Motorcyclists in Vietnam," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    10. Cohen, Jed & Azarova, Valeriya & Kollmann, Andrea & Reichl, Johannes, 2019. "Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles," Energy Economics, Elsevier, vol. 83(C), pages 567-577.
    11. Antonio Bucchiarone & Simone Bassanelli & Annapaola Marconi, 2023. "How to Foster Sustainable Behaviors through Multi-Campaigns Rewarding Mechanisms: The AIR-BREAK Experience," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    12. Mariano Gallo & Mario Marinelli, 2023. "The Use of Hydrogen for Traction in Freight Transport: Estimating the Reduction in Fuel Consumption and Emissions in a Regional Context," Energies, MDPI, vol. 16(1), pages 1-20, January.
    13. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    14. Reema Bera & Bhargab Maitra, 2021. "Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    15. Dongming Wu & Liukai Yu & Qianqian Zhang & Yangyang Jiao & Yuhe Wu, 2021. "Materialism, Ecological Consciousness and Purchasing Intention of Electric Vehicles: An Empirical Analysis among Chinese Consumers," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    16. Ingo Kastner & Annalena Becker & Sebastian Bobeth & Ellen Matthies, 2021. "Are Professionals Rationals? How Organizations and Households Make E-Car Investments," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    17. Pulido, Maria Teresa & Saloma, Caesar, 2020. "Local acceptance and emergence of consensus in a heterogeneous small-world network of agents with and without memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    18. Shi, Lei & Wu, Rongxin & Lin, Boqiang, 2023. "Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective," Energy, Elsevier, vol. 262(PA).
    19. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    20. Walter Leal Filho & Ismaila Rimi Abubakar & Richard Kotter & Thomas Skou Grindsted & Abdul-Lateef Balogun & Amanda Lange Salvia & Yusuf A. Aina & Franziska Wolf, 2021. "Framing Electric Mobility for Urban Sustainability in a Circular Economy Context: An Overview of the Literature," Sustainability, MDPI, vol. 13(14), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10218-:d:1181083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.