IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9259-d1166430.html
   My bibliography  Save this article

Apricot Stone Classification Using Image Analysis and Machine Learning

Author

Listed:
  • Ewa Ropelewska

    (Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland)

  • Ahmed M. Rady

    (Food, Water, Waste Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
    Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland)

  • Nicholas J. Watson

    (Food, Water, Waste Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK)

Abstract

Apricot stones have high commercial value and can be used for manufacturing functional foods, cosmetic products, active carbon, and biodiesel. The optimal processing of the stones is dependent on the cultivar and there is a need for methods to sort among different cultivars (which are often mixed in processing facilities). This study investigates the effectiveness of two low-cost colour imaging systems coupled with supervised learning to develop classification models to determine the cultivar of different stones. Apricot stones of the cultivars ‘Bella’, ‘Early Orange’, ‘Harcot’, ‘Skierniewicka Słodka’, and ‘Taja’ were used. The RGB images were acquired using a flatbed scanner or a digital camera; and 2172 image texture features were extracted within the R , G , B ; L , a , b ; X , Y , Z ; U , and V colour coordinates. The most influential features were determined and resulted in 103 and 89 selected features for the digital camera and the flatbed scanner, respectively. Linear and nonlinear classifiers were applied including Linear Discriminant Analysis (LDA), Decision Trees (DT), k-Nearest Neighbour (kNN), Support Vector Machines (SVM), and Naive Bayes (NB). The models resulting from the flatbed scanner and using selected features achieved an accuracy of 100% via either quadratic diagonal LDA or kNN classifiers. The models developed using images from the digital camera and all or selected features had an accuracy of up to 96.77% using the SVM classifier. This study presents novel and simple-to-implement at-line (flatbed scanner) and online (digital camera) methodologies for apricot stone sorting. The developed procedure combining colour imaging and machine learning may be used for the authentication of apricot stone cultivars and quality evaluation of apricot from sustainable production.

Suggested Citation

  • Ewa Ropelewska & Ahmed M. Rady & Nicholas J. Watson, 2023. "Apricot Stone Classification Using Image Analysis and Machine Learning," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9259-:d:1166430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ewa Ropelewska & Xiang Cai & Zhan Zhang & Kadir Sabanci & Muhammet Fatih Aslan, 2022. "Benchmarking Machine Learning Approaches to Evaluate the Cultivar Differentiation of Plum ( Prunus domestica L.) Kernels," Agriculture, MDPI, vol. 12(2), pages 1-12, February.
    2. Rakhshanda Kousar & Muhammad Sohail Amjad Makhdum & Azhar Abbas & Javaria Nasir & Muhammad Asad ur Rehman Naseer, 2019. "Issues and Impacts of the Apricot Value Chain on the Upland Farmers in the Himalayan Range of Pakistan," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    3. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    4. Neva Karatas, 2022. "Evaluation of Nutritional Content in Wild Apricot Fruits for Sustainable Apricot Production," Sustainability, MDPI, vol. 14(3), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ewa Ropelewska & Justyna Szwejda-Grzybowska & Anna Wrzodak & Monika Mieszczakowska-Frąc, 2024. "Non-Destructive Monitoring of Sweet Pepper Samples After Selected Periods of Lacto-Fermentation," Agriculture, MDPI, vol. 14(11), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    2. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    3. João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    4. Arthur De Sá Ferreira & Ney Meziat-Filho & Ana Paula Antunes Ferreira, 2021. "Double threshold receiver operating characteristic plot for three-modal continuous predictors," Computational Statistics, Springer, vol. 36(3), pages 2231-2245, September.
    5. Masabho P Milali & Samson S Kiware & Nicodem J Govella & Fredros Okumu & Naveen Bansal & Serdar Bozdag & Jacques D Charlwood & Marta F Maia & Sheila B Ogoma & Floyd E Dowell & George F Corliss & Maggy, 2020. "An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    6. Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.
    7. Tzu-Hsuan Lin & Jehn-Ruey Jiang, 2021. "Credit Card Fraud Detection with Autoencoder and Probabilistic Random Forest," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
    8. Apostolos Giannoulidis & Anastasios Gounaris & Athanasios Naskos & Nikodimos Nikolaidis & Daniel Caljouw, 2025. "Engineering and evaluating an unsupervised predictive maintenance solution: a cold-forming press case-study," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2121-2139, March.
    9. Dorian Knoblauch & Jürgen Großmann, 2023. "Towards a Risk-Based Continuous Auditing-Based Certification for Machine Learning," The Review of Socionetwork Strategies, Springer, vol. 17(2), pages 255-273, October.
    10. Alfred Krzywicki & David Muchlinski & Benjamin E. Goldsmith & Arcot Sowmya, 2022. "From academia to policy makers: a methodology for real-time forecasting of infrequent events," Journal of Computational Social Science, Springer, vol. 5(2), pages 1489-1510, November.
    11. Dueñas, Marco & Ortiz, Víctor & Riccaboni, Massimo & Serti, Francesco, 2021. "Assessing the Impact of COVID-19 on Trade: a Machine Learning Counterfactual Analysis," Working papers 79, Red Investigadores de Economía.
    12. Simon Tranberg Bodilsen & Søren Albeck Nielsen & Michael Rosholm, 2025. "Measuring employment readiness for hard-to-place individuals," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-12, December.
    13. Hamna Waheed & Noureen Zafar & Waseem Akram & Awais Manzoor & Abdullah Gani & Saif ul Islam, 2022. "Deep Learning Based Disease, Pest Pattern and Nutritional Deficiency Detection System for “Zingiberaceae” Crop," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
    14. Beibei Xu & Claira R. Seely & Tapomayukh Bhattacharjee & Taika von Konigslow, 2025. "Detection of Neonatal Calf Diarrhea Using Suckle Pressure and Machine Learning," Agriculture, MDPI, vol. 15(17), pages 1-18, August.
    15. Wei-Hsuan Lo-Ciganic & Julie M Donohue & Eric G Hulsey & Susan Barnes & Yuan Li & Courtney C Kuza & Qingnan Yang & Jeanine Buchanich & James L Huang & Christina Mair & Debbie L Wilson & Walid F Gellad, 2021. "Integrating human services and criminal justice data with claims data to predict risk of opioid overdose among Medicaid beneficiaries: A machine-learning approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-18, March.
    16. Nica-Avram, Georgiana & Harvey, John & Smith, Gavin & Smith, Andrew & Goulding, James, 2021. "Identifying food insecurity in food sharing networks via machine learning," Journal of Business Research, Elsevier, vol. 131(C), pages 469-484.
    17. Ali J. Ghandour & Huda Hammoud & Samar Al-Hajj, 2020. "Analyzing Factors Associated with Fatal Road Crashes: A Machine Learning Approach," IJERPH, MDPI, vol. 17(11), pages 1-13, June.
    18. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
    19. Soumadeep Saha & Utpal Garain & Arijit Ukil & Arpan Pal & Sundeep Khandelwal, 2023. "MedTric : A clinically applicable metric for evaluation of multi-label computational diagnostic systems," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-19, August.
    20. Fisnik Doko & Slobodan Kalajdziski & Igor Mishkovski, 2021. "Credit Risk Model Based on Central Bank Credit Registry Data," JRFM, MDPI, vol. 14(3), pages 1-17, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9259-:d:1166430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.