IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8898-d1161011.html
   My bibliography  Save this article

Carbon Footprint Accounting and Influencing Factors Analysis for Forestry Enterprises in the Key State-Owned Forest Region of the Greater Khingan Range, Northeast China

Author

Listed:
  • Hui Wang

    (College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China)

  • Jinzhuo Wu

    (College of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China)

  • Wenshu Lin

    (College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China)

  • Zhaoping Luan

    (Forest Resources Monitoring Center of Key State-Owned Forest Region, National Forestry and Grassland Administration, Da Hinggan Ling 165000, China)

Abstract

This paper constructed a carbon footprint calculation model and analyzed the carbon footprint characteristics and impact mechanism of forestry enterprises in the Greater Khinggan Range, northeast China, based on the survey and statistical data during 2017–2021. The process-based life cycle assessment (LCA) was used to calculate the total carbon footprint and carbon footprint intensity; then, a panel data model combined with ridge regression was used to explore the impacts of different factors on the carbon footprint of the forestry enterprises. Results showed that the forestry enterprises’ total carbon footprint and carbon footprint intensity showed a general trend of increasing first and then decreasing from 2017 to 2021. The average annual carbon footprint of the forestry enterprises ranged from 2354 t CO 2 -eq to 24,354 t CO 2 -eq, and the average annual carbon footprint intensity ranged from 3.48 kg CO 2 -eq hm −2 to 31.76 kg CO 2 -eq hm −2 . Fire area, the number of hired labor, and vehicle usage intensity are significant driving factors of the carbon footprint in forestry enterprises. The study results can provide references for policy formulation in relation to carbon footprint control in forest regions.

Suggested Citation

  • Hui Wang & Jinzhuo Wu & Wenshu Lin & Zhaoping Luan, 2023. "Carbon Footprint Accounting and Influencing Factors Analysis for Forestry Enterprises in the Key State-Owned Forest Region of the Greater Khingan Range, Northeast China," Sustainability, MDPI, vol. 15(11), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8898-:d:1161011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shunan Zhao & Ruiqi Liu & Zuofeng Shang, 2021. "Statistical Inference on Panel Data Models: A Kernel Ridge Regression Method," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 325-337, January.
    2. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    3. Shangwei Zhao & Jun Liao & Dalei Yu, 2020. "Model averaging estimator in ridge regression and its large sample properties," Statistical Papers, Springer, vol. 61(4), pages 1719-1739, August.
    4. Zhou, Jun & Yin, Zhichao & Yue, Pengpeng, 2023. "The impact of access to credit on energy efficiency," Finance Research Letters, Elsevier, vol. 51(C).
    5. Al-mulali, Usama, 2012. "Factors affecting CO2 emission in the Middle East: A panel data analysis," Energy, Elsevier, vol. 44(1), pages 564-569.
    6. Nian, Victor & Chou, S.K. & Su, Bin & Bauly, John, 2014. "Life cycle analysis on carbon emissions from power generation – The nuclear energy example," Applied Energy, Elsevier, vol. 118(C), pages 68-82.
    7. Wang, Shaojian & Fang, Chuanglin & Wang, Yang, 2016. "Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 505-515.
    8. Wei, Yu & Liang, Chao & Li, Yan & Zhang, Xunhui & Wei, Guiwu, 2020. "Can CBOE gold and silver implied volatility help to forecast gold futures volatility in China? Evidence based on HAR and Ridge regression models," Finance Research Letters, Elsevier, vol. 35(C).
    9. Huang, Ren & Zhang, Sufang & Wang, Peng, 2022. "Key areas and pathways for carbon emissions reduction in Beijing for the “Dual Carbon” targets," Energy Policy, Elsevier, vol. 164(C).
    10. Qiaowen Lin & Lu Zhang & Bingkui Qiu & Yi Zhao & Chao Wei, 2021. "Spatiotemporal Analysis of Land Use Patterns on Carbon Emissions in China," Land, MDPI, vol. 10(2), pages 1-13, February.
    11. Ye, Xiang & Yue, Pengpeng, 2023. "Financial literacy and household energy efficiency: An analysis of credit market and supply chain," Finance Research Letters, Elsevier, vol. 52(C).
    12. Ba, Feng & Liu, Jinlong & Zhu, Ting & Liu, Yonggong & Zhao, Jiacheng, 2020. "CDM forest carbon sequestration projects in western China: An analysis using actor-centered power theory," Forest Policy and Economics, Elsevier, vol. 115(C).
    13. Seung-Jun Park & Dae Chul Kim, 2018. "Analysis on Determinant Factors of Local Government Expenditure with Panel Data Ridge Regression (in Korean)," Economic Analysis (Quarterly), Economic Research Institute, Bank of Korea, vol. 24(1), pages 67-98, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Chor Foon & Abosedra, Salah & Naghavi, Navaz, 2021. "Does the quality of institutions and education strengthen the quality of the environment? Evidence from a global perspective," Energy, Elsevier, vol. 218(C).
    2. Liu, Qianqian & Wang, Shaojian & Zhang, Wenzhong & Li, Jiaming & Kong, Yunlong, 2019. "Examining the effects of income inequality on CO2 emissions: Evidence from non-spatial and spatial perspectives," Applied Energy, Elsevier, vol. 236(C), pages 163-171.
    3. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    4. Klodian Mu o & Enzo Valentini & Stefano Lucarelli, 2021. "The Relationships between GDP growth, Energy Consumption, Renewable Energy Production and CO2 Emissions in European Transition Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 362-373.
    5. Shijie Li & Chunshan Zhou & Shaojian Wang & Shuang Gao & Zhitao Liu, 2019. "Spatial Heterogeneity in the Determinants of Urban Form: An Analysis of Chinese Cities with a GWR Approach," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    6. Hou, Xiang & Hu, Qianlin & Liang, Xin & Xu, Jingxuan, 2023. "How do low-carbon city pilots affect carbon emissions? Staggered difference in difference evidence from Chinese firms," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 664-686.
    7. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    8. Alfonso Mendoza-Velázquez & Luis Carlos Ortuño-Barba & Luis David Conde-Cortés, 2022. "Corporate governance and firm performance in hybrid model countries," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 21(1), pages 32-58, February.
    9. Ilona Babenko & Benjamin Bennett & John M Bizjak & Jeffrey L Coles & Jason J Sandvik, 2023. "Clawback Provisions and Firm Risk," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 12(2), pages 191-239.
    10. Kitazawa, Yoshitsugu, 2001. "Exponential regression of dynamic panel data models," Economics Letters, Elsevier, vol. 73(1), pages 7-13, October.
    11. Jessica M. Mc Lay & Roy Lay-Yee & Barry J. Milne & Peter Davis, 2015. "Regression-Style Models for Parameter Estimation in Dynamic Microsimulation: An Empirical Performance Assessment," International Journal of Microsimulation, International Microsimulation Association, vol. 8(2), pages 83-127.
    12. Hany Eldemerdash & Hugh Metcalf & Sara Maioli, 2014. "Twin deficits: new evidence from a developing (oil vs. non-oil) countries’ perspective," Empirical Economics, Springer, vol. 47(3), pages 825-851, November.
    13. Heng, Dyna, 2011. "Capital flows and real exchange rate: does financial development matter?," MPRA Paper 48553, University Library of Munich, Germany, revised May 2012.
    14. Fali Huang & Myoung-Jae Lee, 2010. "Dynamic treatment effect analysis of TV effects on child cognitive development," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(3), pages 392-419.
    15. Fernando Mayoral & Carlos Garcimartín, 2013. "The impact of population on the reduction of steady-state disparities across Spanish regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 50(1), pages 49-69, February.
    16. Dalila Nicet-Chenaf & Eric Rougier, 2009. "Human capital and structural change: how do they interact with each others in growth," Post-Print hal-00798441, HAL.
    17. Valérie Mignon & Christophe Hurlin, 2007. "Une synthèse des tests de cointégration sur données de panel," Économie et Prévision, Programme National Persée, vol. 180(4), pages 241-265.
    18. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    19. Martin Andersson & Hans Lööf, 2009. "Learning‐by‐Exporting Revisited: The Role of Intensity and Persistence," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(4), pages 893-916, December.
    20. Wang, Peng & Huang, Ren & Zhang, Sufang & Liu, Xiaoli, 2023. "Pathways of carbon emissions reduction under the water-energy constraint: A case study of Beijing in China," Energy Policy, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8898-:d:1161011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.