IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p636-d1019808.html
   My bibliography  Save this article

Passenger Travel Path Selection Based on the Characteristic Value of Transport Services

Author

Listed:
  • Peiwen Zhang

    (School of Economics and Management, Civil Aviation Flight University of China, Guanghan 618307, China)

  • Rui Ding

    (School of Airport, Civil Aviation Flight University of China, Guanghan 618307, China)

  • Wenke Zhao

    (School of Airport, Civil Aviation Flight University of China, Guanghan 618307, China)

  • Liaodong Zhang

    (Scientific Research Department, Civil Aviation Flight University of China, Guanghan 618307, China)

  • Hong Sun

    (Scientific Base of Flying Technology and Safety, Civil Aviation Flight University of China, Guanghan 618307, China)

Abstract

In this paper, we establish a generalized cost function for passenger travel based on the characteristic value of transportation services, and we select high-speed rail, air, and air–rail as the selection branches in order to build a passenger travel decision-making model combined with a logit model to analyze the preference for passenger travel choices. The results show that, within the transportation network of the Chengdu–Chongqing economic circle, passengers are more likely to take the high-speed rail option directly, followed by air–rail and air options, and these results are concentrated within a transportation distance range of less than 1000 km, 1000–1200 km, and more than 1200 km, respectively. Among them, the OD travel routes comprised Chengdu and Yibin as the transit nodes of the combined travel account for more than 50%, which exhibits the high strategic development potential of air–rail combined transportation. Ridge regression analyses show that ticket price, quickness, convenience, and comfort influence the probability related to travelers’ travel choice at varying degrees. The elasticity values of the fatigue recovery time, travel time, and time value per capita for high-speed rail are much greater than the other two travel modes, indicating that these three factors have a high impact on the travel choice behavior of high-speed rail.

Suggested Citation

  • Peiwen Zhang & Rui Ding & Wenke Zhao & Liaodong Zhang & Hong Sun, 2022. "Passenger Travel Path Selection Based on the Characteristic Value of Transport Services," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:636-:d:1019808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Du, Muqing & Chen, Anthony, 2022. "Sensitivity analysis for transit equilibrium assignment and applications to uncertainty analysis," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 175-202.
    2. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    3. Yeun-Touh Li & Jan-Dirk Schmöcker, 2017. "Adaptation patterns to high speed rail usage in Taiwan and China," Transportation, Springer, vol. 44(4), pages 807-830, July.
    4. Li, Xue-yan & Li, Xue-mei & Li, Xue-wei & Qiu, He-ting, 2017. "Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 405-419.
    5. Luis Cadarso & Vikrant Vaze & Cynthia Barnhart & Ángel Marín, 2017. "Integrated Airline Scheduling: Considering Competition Effects and the Entry of the High Speed Rail," Transportation Science, INFORMS, vol. 51(1), pages 132-154, February.
    6. Feng, Yingzi & Zhao, Jiandong & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2022. "Choices of intercity multimodal passenger travel modes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    7. Chulin Pan & Huayi Wang & Hongpeng Guo & Hong Pan, 2021. "How Do the Population Structure Changes of China Affect Carbon Emissions? An Empirical Study Based on Ridge Regression Analysis," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    8. Chai, Jian & Zhou, Youhong & Zhou, Xiaoyang & Wang, Shouyang & Zhang, Zhe George & Liu, Zenghui, 2018. "Analysis on shock effect of China’s high-speed railway on aviation transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 35-44.
    9. Li, Zhi-Chun & Sheng, Dian, 2016. "Forecasting passenger travel demand for air and high-speed rail integration service: A case study of Beijing-Guangzhou corridor, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 397-410.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    2. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    3. Jiao, Jingjuan & Wang, Jiaoe & Zhang, Fangni & Jin, Fengjun & Liu, Wei, 2020. "Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China," Transport Policy, Elsevier, vol. 91(C), pages 1-15.
    4. Strauss, Jack & Li, Hongchang & Cui, Jinli, 2021. "High-speed Rail's impact on airline demand and air carbon emissions in China," Transport Policy, Elsevier, vol. 109(C), pages 85-97.
    5. Cheng, Junmei & Chen, Zhenhua, 2021. "Impact of high-speed rail on the operational capacity of conventional rail in China," Transport Policy, Elsevier, vol. 110(C), pages 354-367.
    6. Liu, Shuli & Wan, Yulai & Zhang, Anming, 2021. "Does high-speed rail development affect airport productivity? Evidence from China and Japan," Transport Policy, Elsevier, vol. 110(C), pages 1-15.
    7. Li, Zhi-Chun & Tu, Ningwen & Fu, Xiaowen & Sheng, Dian, 2022. "Modeling the effects of airline and high-speed rail cooperation on multi-airport systems: The implications on congestion, competition and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 448-478.
    8. Yang, Min & Wang, Zheyuan & Cheng, Long & Chen, Enhui, 2022. "Exploring satisfaction with air-HSR intermodal services: A Bayesian network analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 69-89.
    9. Huang, Yan & Zong, Huiming, 2020. "The spatial distribution and determinants of China’s high-speed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 56-70.
    10. Weidong Li & Xuefang Wang & Olli-Pekka Hilmola, 2020. "Does High-Speed Railway Influence Convergence of Urban-Rural Income Gap in China?," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    11. Avogadro, Nicolò & Cattaneo, Mattia & Paleari, Stefano & Redondi, Renato, 2021. "Replacing short-medium haul intra-European flights with high-speed rail: Impact on CO2 emissions and regional accessibility," Transport Policy, Elsevier, vol. 114(C), pages 25-39.
    12. Avogadro, Nicolò & Pels, Eric & Redondi, Renato, 2023. "Policy impacts on the propensity to travel by HSR in the Amsterdam – London market," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    13. Yuan, Yalong & Yang, Min & Feng, Tao & Rasouli, Soora & Li, Dawei & Ruan, Xinpei, 2021. "Heterogeneity in passenger satisfaction with air-rail integration services: Results of a finite mixture partial least squares model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 133-158.
    14. Wang, Yixiao & Pels, Eric & Teunter, Ruud H. & Sun, Luoyi & Wu, Jianhong, 2023. "Railway liberalization, airport congestion toll, and infrastructure pricing: Modelling and numerical analysis for European and Chinese markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    15. Li, Xueyan & Qiu, Heting & Yang, Yanni & Zhang, Hankun, 2022. "Differentiated fares depend on bus line and time for urban public transport network based on travelers’ day-to-day group behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    16. Wang, Kun & Xia, Wenyi & Zhang, Anming & Zhang, Qiong, 2018. "Effects of train speed on airline demand and price: Theory and empirical evidence from a natural experiment," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 99-130.
    17. Yang, Zhiwei & Li, Can & Jiao, Jingjuan & Liu, Wei & Zhang, Fangni, 2020. "On the joint impact of high-speed rail and megalopolis policy on regional economic growth in China," Transport Policy, Elsevier, vol. 99(C), pages 20-30.
    18. Bergantino, Angela Stefania & Madio, Leonardo, 2020. "Intermodal competition and substitution. HSR versus air transport: Understanding the socio-economic determinants of modal choice," Research in Transportation Economics, Elsevier, vol. 79(C).
    19. Ren, Xiaohang & Zeng, Gudian & Dong, Kangyin & Wang, Kun, 2023. "How does high-speed rail affect tourism development? The case of the Sichuan-Chongqing Economic Circle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    20. Yang, Xiaolan & Wang, Rui & Guo, Dongmei & Sun, Weizeng, 2020. "The reconfiguration effect of China's high-speed railway on intercity connection ——A study based on media attention index," Transport Policy, Elsevier, vol. 95(C), pages 47-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:636-:d:1019808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.