IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5437-d806712.html
   My bibliography  Save this article

Tool for the Establishment of Agro-Management Zones Using GIS Techniques for Precision Farming in Egypt

Author

Listed:
  • Mohamed M. Elsharkawy

    (Soils Department, Faculty of Agriculture, Beni-Suef University, Beni Suef 62514, Egypt)

  • Abd El Aziz S. Sheta

    (Soils Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt)

  • Paola D’Antonio

    (Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali (SAFE), Università degli Studi della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy)

  • Mohammed S. Abdelwahed

    (Soils Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt)

  • Antonio Scopa

    (Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali (SAFE), Università degli Studi della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy)

Abstract

Agro-management zones recently became the backbone of modern agriculture. Delineating management zones for Variable-Rate Fertilization (VRF) can provide important ecological benefits and better sustainability of the new Egyptian farming projects. This article aims to represent an approach for delineating management zones using Spatial Multicriteria Evaluation (SMCE) within irrigated peanut pivot situated at the eastern Nile Delta, Egypt. The results indicated that soil data, such as soil texture, soil type, the elevation of the landscape, and slope, allow for sampling the study area into similar classes and in smaller units, along with a crop productivity map. The effects of the variability in soil characteristics within the field on Peanut yields are predicted by the soil suitability model. In addition, final management zones map a varied amount of nutrients that could be added to different pivot zones. In conclusion, mapping soil units with a sufficient number of field observations within each class provided an acceptable accuracy, and a good spatial distribution of the suitability classification was achieved. Hence, agro-management zones are essentially needed for policymakers in a specific field in order to furnish an evaluation about the transformations at a territorial scale and for studying the strategies to realize environmental sustainability and to reduce the territorial impacts.

Suggested Citation

  • Mohamed M. Elsharkawy & Abd El Aziz S. Sheta & Paola D’Antonio & Mohammed S. Abdelwahed & Antonio Scopa, 2022. "Tool for the Establishment of Agro-Management Zones Using GIS Techniques for Precision Farming in Egypt," Sustainability, MDPI, vol. 14(9), pages 1-26, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5437-:d:806712
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ustaoglu, E. & Sisman, S. & Aydınoglu, A.C., 2021. "Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques," Ecological Modelling, Elsevier, vol. 455(C).
    2. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    3. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Vecchio, Yari & De Rosa, Marcello & Adinolfi, Felice & Bartoli, Luca & Masi, Margherita, 2020. "Adoption of precision farming tools: A context-related analysis," Land Use Policy, Elsevier, vol. 94(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    2. Nina Almasifar & Tülay Özdemir Canbolat & Milad Akhavan & Roberto Alonso González-Lezcano, 2021. "Proposing a New Methodology for Monument Conservation “SCOPE MANAGEMENT” by the Use of an Analytic Hierarchy Process Project Management Institute System and the ICOMOS Burra Charter," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    3. Chunyan, Ling & Jingzhe, Lei & Way, Kuo, 2022. "Bayesian support vector machine for optimal reliability design of modular systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Jitendar Kumar Khatri & Bhimaraya Metri, 2016. "SWOT-AHP Approach for Sustainable Manufacturing Strategy Selection: A Case of Indian SME," Global Business Review, International Management Institute, vol. 17(5), pages 1211-1226, October.
    5. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    6. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    7. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    8. Lim, Chulmin & Rowsell, Joe & Kim, Seongcheol, 2023. "Exploring the killer domains to create new value: A Comparative case study of Canadian and Korean telcos," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277998, International Telecommunications Society (ITS).
    9. Ho, William, 2008. "Integrated analytic hierarchy process and its applications - A literature review," European Journal of Operational Research, Elsevier, vol. 186(1), pages 211-228, April.
    10. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.
    12. Karasakal, Esra & Aker, Pınar, 2017. "A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem," Omega, Elsevier, vol. 73(C), pages 79-92.
    13. Lucie Lidinska & Josef Jablonsky, 2018. "AHP model for performance evaluation of employees in a Czech management consulting company," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 239-258, March.
    14. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    15. Saeed Nosratabadi & Gergo Pinter & Amir Mosavi & Sandor Semperger, 2020. "Sustainable Banking; Evaluation of the European Business Models," Papers 2003.13423, arXiv.org.
    16. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    17. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    18. Jing Xu & Ren Zhang & Yangjun Wang & Hengqian Yan & Quanhong Liu & Yutong Guo & Yongcun Ren, 2022. "A New Framework for Assessment of Offshore Wind Farm Location," Energies, MDPI, vol. 15(18), pages 1-17, September.
    19. M Tavana & M A Sodenkamp, 2010. "A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1459-1470, October.
    20. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5437-:d:806712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.