IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5152-d801350.html
   My bibliography  Save this article

Spatial–Temporal Evolution Characteristics and Influencing Factors of Industrial Pollution Control Efficiency in China

Author

Listed:
  • Wenjie Zou

    (School of Economics, Fujian Normal University, Fuzhou 350117, China)

  • Liqin Zhang

    (School of Economics, Fujian Normal University, Fuzhou 350117, China)

  • Jieying Xu

    (School of Economics, Fujian Normal University, Fuzhou 350117, China)

  • Yufeng Xie

    (School of Economics, Fujian Normal University, Fuzhou 350117, China)

  • Huangxin Chen

    (School of Economics, Fujian Normal University, Fuzhou 350117, China)

Abstract

The green transformation and development of industry form the foundation of sustainable development for a country’s society, economy, and environment. Industrial pollution control is one inevitable choice for all industries following the path of sustainable development. Improving industrial pollution control efficiency is also a natural requirement for reducing pollution emissions and achieving carbon peak and carbon neutrality. Based on panel data of 30 provinces in China from 2012–2018, this research applies DEA window analysis to measure the efficiency of industrial pollution control inputs and outputs, and empirically evaluates those factors influencing such efficiency. The findings demonstrate that overall industrial pollution control efficiency in China exhibits a decreasing trend from 2012 to 2018, but there are clear differences among provinces. Industrial pollution control efficiencies in the east and central regions are consistent with the national average, while said efficiencies in the west and northeast regions fluctuate in waves, with the effect of influencing factors in different regions varying significantly. Lastly, based on the results of empirical analysis, this research puts forward the optimization path to further improve industrial pollution control efficiency in China, and to provide new suggestions for its advancement.

Suggested Citation

  • Wenjie Zou & Liqin Zhang & Jieying Xu & Yufeng Xie & Huangxin Chen, 2022. "Spatial–Temporal Evolution Characteristics and Influencing Factors of Industrial Pollution Control Efficiency in China," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5152-:d:801350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Huangxin & Shi, Yi & Zhao, Xin, 2022. "Investment in renewable energy resources, sustainable financial inclusion and energy efficiency: A case of US economy," Resources Policy, Elsevier, vol. 77(C).
    2. Ying-yu Lu & Yue He & Bo Wang & Shuang-shuang Ye & Yidi Hua & Lei Ding, 2019. "Efficiency Evaluation of Atmospheric Pollutants Emission in Zhejiang Province China: A DEA-Malmquist Based Approach," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    3. Jyri Seppäläa & Matti Melanen & Ilmo Mäenpää & Sirkka Koskela & Jyrki Tenhunen & Marja‐Riitta Hiltunen, 2005. "How Can the Eco‐efficiency of a Region be Measured and Monitored?," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 117-130, October.
    4. Shen, Neng & Peng, Hui, 2021. "Can industrial agglomeration achieve the emission-reduction effect?," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    5. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    6. Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
    7. Li, Xuehui & Xu, Yangyang & Yao, Xin, 2021. "Effects of industrial agglomeration on haze pollution: A Chinese city-level study," Energy Policy, Elsevier, vol. 148(PA).
    8. Yin, Pengzhen & Sun, Jiasen & Chu, Junfei & Liang, Liang, 2016. "Evaluating the environmental efficiency of a two-stage system with undesired outputs by a DEA approach: An interest preference perspectiveAuthor-Name: Wu, Jie," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1047-1062.
    9. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    10. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    11. Bampatsou, Christina & Halkos, George, 2019. "Economic growth, efficiency and environmental elasticity for the G7 countries," Energy Policy, Elsevier, vol. 130(C), pages 355-360.
    12. Miao, Zhuang & Baležentis, Tomas & Shao, Shuai & Chang, Dongfeng, 2019. "Energy use, industrial soot and vehicle exhaust pollution—China's regional air pollution recognition, performance decomposition and governance," Energy Economics, Elsevier, vol. 83(C), pages 501-514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoxian Su & Yang Yang & Yun Wang & Pan Zhang & Xin Luo, 2023. "Study on Spatiotemporal Evolution Features and Affecting Factors of Collaborative Governance of Pollution Reduction and Carbon Abatement in Urban Agglomerations of the Yellow River Basin," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    2. Han Zou & Yang Liu & Baihao Li & Wenjing Luo, 2022. "Sustainable Development Efficiency of Cultural Landscape Heritage in Urban Fringe Based on GIS-DEA-MI, a Case Study of Wuhan, China," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    3. Quan Guo & Zijing Liang & Xiang Bai & Mengnan Lv & Anying Zhang, 2022. "The Analysis of Carbon Emission’s Characteristics and Dynamic Evolution Based on the Strategy of Unbalanced Regional Economic Development in China," Sustainability, MDPI, vol. 14(14), pages 1-31, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    2. Xiaoling Wang & Manyin Zhang & Jatin Nathwani & Fangming Yang, 2019. "Measuring Environmental Efficiency through the Lens of Technology Heterogeneity: A Comparative Study between China and the G20," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    3. Xiao-Ning Li & Ying Feng & Pei-Ying Wu & Yung-Ho Chiu, 2021. "An Analysis of Environmental Efficiency and Environmental Pollution Treatment Efficiency in China’s Industrial Sector," Sustainability, MDPI, vol. 13(5), pages 1-25, February.
    4. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    5. Wentao Lu & Guixiang Zhang, 2023. "Green development efficiency of urban agglomerations in a developing country: evidence from Beijing-Tianjin-Hebei in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6939-6962, July.
    6. Rendao Ye & Yue Qi & Wenyan Zhu, 2023. "Impact of Agricultural Industrial Agglomeration on Agricultural Environmental Efficiency in China: A Spatial Econometric Analysis," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    7. Toshiyuki Sueyoshi & Yan Yuan & Aijun Li & Daoping Wang, 2017. "Social Sustainability of Provinces in China: A Data Envelopment Analysis (DEA) Window Analysis under the Concepts of Natural and Managerial Disposability," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    8. Hengran Bian & Yi Liu, 2023. "A Deep Graph Learning-Enhanced Assessment Method for Industry-Sustainability Coupling Degree in Smart Cities," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    9. Liu, Yazhou & Ren, Tiantian & Liu, Lijun & Ni, Jinlan & Yin, Yingkai, 2023. "Heterogeneous industrial agglomeration, technological innovation and haze pollution," China Economic Review, Elsevier, vol. 77(C).
    10. Fengyi Lin & Sheng-Wei Lin & Wen-Min Lu, 2018. "Sustainability Assessment of Taiwan’s Semiconductor Industry: A New Hybrid Model Using Combined Analytic Hierarchy Process and Two-Stage Additive Network Data Envelopment Analysis," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    11. Han-Shen Chen & Bi-Kun Tsai & Gwo-Bao Liou & Chi-Ming Hsieh, 2018. "Efficiency Assessment of Inbound Tourist Service Using Data Envelopment Analysis," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    12. Wang, Xuliang & Xu, Lulu & Ye, Qin & He, Shi & Liu, Yi, 2022. "How does services agglomeration affect the energy efficiency of the service sector? Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    13. Vlontzos, George & Niavis, Spyros & Manos, Basil, 2014. "A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 91-96.
    14. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
    15. Yang, Jun & Cheng, Jixin & Zou, Ran & Geng, Zhifei, 2021. "Industrial SO2 technical efficiency, reduction potential and technology heterogeneities of China's prefecture-level cities: A multi-hierarchy meta-frontier parametric approach," Energy Economics, Elsevier, vol. 104(C).
    16. Li, Shuangmei & Zhu, Xuehong & Zhang, Tao, 2023. "Optimum combination of heterogeneous environmental policy instruments and market for green transformation: Empirical evidence from China's metal sector," Energy Economics, Elsevier, vol. 123(C).
    17. Song, Malin & Song, Yaqing & An, Qingxian & Yu, Huayin, 2013. "Review of environmental efficiency and its influencing factors in China: 1998–2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 8-14.
    18. Huaping Sun & Lingxiang Hu & Yong Geng & Guangchuan Yang, 2020. "Uncovering impact factors of carbon emissions from transportation sector: evidence from China’s Yangtze River Delta Area," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1423-1437, October.
    19. Kai He & Nan Zhu & Wu Jiang & Chuanjin Zhu, 2022. "Efficiency Evaluation of Chinese Provincial Industrial System Based on Network DEA Method," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    20. Genli Tang & Minghai Lin & Yilan Xu & Jinlin Li & Litai Chen, 2021. "Impact of rating and praise campaigns on local government environmental governance efficiency: Evidence from the campaign of establishment of national sanitary cities in China," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5152-:d:801350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.