IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5001-d798997.html
   My bibliography  Save this article

Benefit Analysis of Economic and Social Water Supply in Xi’an Based on the Emergy Method

Author

Listed:
  • Zihan Guo

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Ni Wang

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Xiaolian Mao

    (Hanjiang-to-Weihe River Valley Water Diversion Project Construction Co., Ltd., Xi’an 710048, China)

  • Xinyue Ke

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Shaojiang Luo

    (Hanjiang-to-Weihe River Valley Water Diversion Project Construction Co., Ltd., Xi’an 710048, China)

  • Long Yu

    (Hanjiang-to-Weihe River Valley Water Diversion Project Construction Co., Ltd., Xi’an 710048, China)

Abstract

In order to manage regional water resources efficiently and sustainably and promote the rational utilization of water resources, it is necessary to evaluate the water-supply benefit reasonably. On the basis of emergy theory, this paper constructs the water-supply-benefit model of economic (industry, agriculture, and the tertiary industry) and social (domestic, employment security, entertainment, scientific research) systems. Taking Xi’an from 2014 to 2020 as an example, by analyzing the energy flow of each system and the multisource water transformities, the water contribution rate, the water-supply benefit, and the unit-water-resource value in each system are calculated. For the water-supply benefits: Industry > Agriculture > Domestic > Tertiary industry > Employment Security > Entertainment > Scientific research. For the unit-water-resource values: Industry > Tertiary industry > Agriculture > Domestic > Entertainment > Employment security > Scientific research. In the economic system, the water-supply benefit and the unit-water value of industry were always the largest, followed by agriculture and the tertiary industry. However, the Pearson correlation coefficient between the water contribution rate and the output of the industrial system was only 0.52, which was less than that of other production industries, which indicates that there might be a waste of water and that industrial water conservation needs to be further strengthened. In the social system, the domestic-water-supply benefits and the water-resource value were the largest. This is because water resources, as a basic resource, always affect people’s health and quality of life.

Suggested Citation

  • Zihan Guo & Ni Wang & Xiaolian Mao & Xinyue Ke & Shaojiang Luo & Long Yu, 2022. "Benefit Analysis of Economic and Social Water Supply in Xi’an Based on the Emergy Method," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5001-:d:798997
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anne Wambui Mumbi & Tsunemi Watanabe, 2022. "Cost Estimations of Water Pollution for the Adoption of Suitable Water Treatment Technology," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    2. Lina Sun & Wenxi Lu & Qingchun Yang & Jordi Martín & Di Li, 2013. "Ecological Compensation Estimation of Soil and Water Conservation Based on Cost-Benefit Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2709-2727, June.
    3. M. Genius & E. Hatzaki & E. Kouromichelaki & G. Kouvakis & S. Nikiforaki & K. Tsagarakis, 2008. "Evaluating Consumers’ Willingness to Pay for Improved Potable Water Quality and Quantity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1825-1834, December.
    4. Won-Seok Lee & Seung-Hoon Yoo & Jeehyeong Kim, 2013. "Measuring the Economic Benefits of the Tap Water Supply Service in Urban Areas: The Case of Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 619-627, January.
    5. Suzanne Dallman & Anita M. Chaudhry & Misgana K. Muleta & Juneseok Lee, 2016. "The Value of Rain: Benefit-Cost Analysis of Rainwater Harvesting Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4415-4428, September.
    6. Xiuli Liu & Xikang Chen & Shouyang Wang, 2009. "Evaluating and Predicting Shadow Prices of Water Resources in China and Its Nine Major River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1467-1478, June.
    7. Shah, Syed Mahboob & Liu, Gengyuan & Yang, Qing & Casazza, Marco & Agostinho, Feni & Giannetti, Biagio F., 2021. "Sustainability assessment of agriculture production systems in Pakistan: A provincial-scale energy-based evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    8. John A. Downing & Stephen Polasky & Sheila M. Olmstead & Stephen C. Newbold, 2021. "Protecting local water quality has global benefits," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    9. Francisco Alcon & Julia Martin-Ortega & Francisco Pedrero & Juan Alarcon & M. Miguel, 2013. "Incorporating Non-market Benefits of Reclaimed Water into Cost-Benefit Analysis: A Case Study of Irrigated Mandarin Crops in southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1809-1820, April.
    10. Shen, Xiaobo & Lin, Boqiang, 2017. "The shadow prices and demand elasticities of agricultural water in China: A StoNED-based analysis," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 21-28.
    11. Paolo D’Odorico & Davide Danilo Chiarelli & Lorenzo Rosa & Alfredo Bini & David Zilberman & Maria Cristina Rulli, 2020. "The global value of water in agriculture," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(36), pages 21985-21993, September.
    12. Xiaojing Shen & Xu Wu & Xinmin Xie & Chuanjiang Wei & Liqin Li & Jingjing Zhang, 2021. "Synergetic Theory-Based Water Resource Allocation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2053-2078, May.
    13. Miaosen Ma & Min Zhao, 2019. "Research on an Improved Economic Value Estimation Model for Crop Irrigation Water in Arid Areas: From the Perspective of Water-Crop Sustainable Development," Sustainability, MDPI, vol. 11(4), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo Muchen & Rosita Hamdan & Rossazana Ab-Rahim, 2022. "Data-Driven Evaluation and Optimization of Agricultural Environmental Efficiency with Carbon Emission Constraints," Sustainability, MDPI, vol. 14(19), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koo, A Mi & Kim, Ju-Hee & Yoo, Seung-Hoon, 2022. "Household willingness to pay for a smart water metering and monitoring system: The case of South Korea," Utilities Policy, Elsevier, vol. 79(C).
    2. Yubing Wang & Kai Zhu & Xiao Xiong & Jianuo Yin & Haoran Yan & Yuan Zhang & Hai Liu, 2022. "Assessment of the Ecological Compensation Standards for Cross-Basin Water Diversion Projects from the Perspective of Main Headwater and Receiver Areas," IJERPH, MDPI, vol. 20(1), pages 1-31, December.
    3. Bolinches, Antonio & Blanco-Gutiérrez, Irene & Zubelzu, Sergio & Esteve, Paloma & Gómez-Ramos, Almudena, 2022. "A method for the prioritization of water reuse projects in agriculture irrigation," Agricultural Water Management, Elsevier, vol. 263(C).
    4. Kevin Boyle & Sapna Kaul & Ali Hashemi & Xiaoshu Li, 2015. "Applicability of benefit transfers for evaluation of homeland security counterterrorism measures," Chapters, in: Carol Mansfield & V. K. Smith (ed.), Benefit–Cost Analyses for Security Policies, chapter 10, pages 225-253, Edward Elgar Publishing.
    5. Van Houtven, George L. & Pattanayak, Subhrendu K. & Usmani, Faraz & Yang, Jui-Chen, 2017. "What are Households Willing to Pay for Improved Water Access? Results from a Meta-Analysis," Ecological Economics, Elsevier, vol. 136(C), pages 126-135.
    6. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
    7. Yuanying Chi & Wenbing Zhou & Zhenyu Wang & Yu Hu & Xiao Han, 2021. "The Influence Paths of Agricultural Mechanization on Green Agricultural Development," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    8. Mesa-Jurado, Maria A. & Martin-Ortega, Julia & Ruto, Eric & Berbel, Julio, 2011. "The economic value of guaranteed water supply for irrigation under scarcity conditions," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114650, European Association of Agricultural Economists.
    9. Xin Jiang & Yuyu Liu & Ranhang Zhao, 2019. "A Framework for Ecological Compensation Assessment: A Case Study in the Upper Hun River Basin, Northeast China," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    10. Imane Bounadi & Khalil Allali & Aziz Fadlaoui & Mohammed Dehhaoui, 2023. "Water Pollution Abatement in Olive Oil Industry in Morocco: Cost Estimates and Policy Implications," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    11. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    12. George Ekonomou & Dimitris Kallioras & Angeliki N. Menegaki & Sergio Alvarez, 2023. "Tourist Preferences for Revitalizing Wellness Products and Reversing Depopulation in Rural Destinations," Sustainability, MDPI, vol. 15(24), pages 1-31, December.
    13. Weizhe Weng & Kelly M. Cobourn & Armen R. Kemanian & Kevin J. Boyle & Yuning Shi & Jemma Stachelek & Charles White, 2024. "Quantifying co‐benefits of water quality policies: An integrated assessment model of land and nitrogen management," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 547-572, March.
    14. Zhang, Fan & Fogarty, James, 2015. "Nonmarket Valuation of Water Sensitive Cities: Current Knowledge and Issues," Working Papers 207694, University of Western Australia, School of Agricultural and Resource Economics.
    15. Olivia Jensen & Namrata Chindarkar, 2019. "Sustaining Reforms in Water Service Delivery: the Role of Service Quality, Salience, Trust and Financial Viability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 975-992, February.
    16. Guangming Yang & Guofang Gong & Qingqing Gui, 2022. "Exploring the Spatial Network Structure of Agricultural Water Use Efficiency in China: A Social Network Perspective," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    17. Jiaxing Pang & Xue Li & Xiang Li & Ting Yang & Ya Li & Xingpeng Chen, 2022. "Analysis of Regional Differences and Factors Influencing the Intensity of Agricultural Water in China," Agriculture, MDPI, vol. 12(4), pages 1-20, April.
    18. Qing Zhou & Yali Zhang & Feng Wu, 2022. "Can Water Price Improve Water Productivity? A Water-Economic-Model-Based Study in Heihe River Basin, China," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    19. Tamim Younos & Juneseok Lee & Tammy Parece, 2019. "Twenty-first century urban water management: the imperative for holistic and cross-disciplinary approach," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 9(1), pages 90-95, March.
    20. Alcon, Francisco & Zabala, José A. & Martínez-García, Victor & Albaladejo, José A. & López-Becerra, Erasmo I. & de-Miguel, María D. & Martínez-Paz, José M., 2022. "The social wellbeing of irrigation water. A demand-side integrated valuation in a Mediterranean agroecosystem," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5001-:d:798997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.