IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p3062-d765192.html
   My bibliography  Save this article

The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus

Author

Listed:
  • Sławomir Francik

    (Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland)

  • Bogusława Łapczyńska-Kordon

    (Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland)

  • Norbert Pedryc

    (Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland)

  • Wojciech Szewczyk

    (Department of Agroecology and Plant Production, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland)

  • Renata Francik

    (Department of Bioorganic Chemistry, Chair of Organic Chemistry, Jagiellonian University Medical College, 30-688 Krakow, Poland
    Institute of Health, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland)

  • Zbigniew Ślipek

    (Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland
    Technical Institute, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland)

Abstract

The aim of this paper is to develop neural models enabling the determination of biomechanical parameters for giant miscanthus stems. The static three-point bending test is used to determine the bending strength parameters of the miscanthus stem. In this study, we assume the modulus of elasticity bending and maximum stress in bending as the dependent variables. As independent variables (inputs of the neural network) we assume water content, internode number, maximum bending force value and dimensions characterizing the cross-section of miscanthus stem: maximum and minimum stem diameter and stem wall thickness. The four developed neural models, enabling the determination of the value of the modulus of elasticity in bending and the maximum stress in bending, demonstrate sufficient and even very high accuracy. The neural networks have an average relative error of 2.18%, 2.21%, 3.24% and 0.18% for all data subsets, respectively. The results of the sensitivity analysis confirmed that all input variables are important for the accuracy of the developed neural models—correct semantic models.

Suggested Citation

  • Sławomir Francik & Bogusława Łapczyńska-Kordon & Norbert Pedryc & Wojciech Szewczyk & Renata Francik & Zbigniew Ślipek, 2022. "The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:3062-:d:765192
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/3062/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/3062/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magdalena Dołżyńska & Sławomir Obidziński & Małgorzata Kowczyk-Sadowy & Małgorzata Krasowska, 2019. "Densification and Combustion of Cherry Stones," Energies, MDPI, vol. 12(16), pages 1-15, August.
    2. Reynolds, Jonathan & Ahmad, Muhammad Waseem & Rezgui, Yacine & Hippolyte, Jean-Laurent, 2019. "Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 699-713.
    3. Arkadiusz Dyjakon & Łukasz Sobol & Mateusz Krotowski & Krzysztof Mudryk & Krzysztof Kawa, 2020. "The Impact of Particles Comminution on Mechanical Durability of Wheat Straw Briquettes," Energies, MDPI, vol. 13(23), pages 1-14, November.
    4. Jakub Styks & Marek Wróbel & Jarosław Frączek & Adrian Knapczyk, 2020. "Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets," Energies, MDPI, vol. 13(8), pages 1-20, April.
    5. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    6. Beata Brzychczyk & Tomasz Hebda & Norbert Pedryc, 2020. "The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris," Energies, MDPI, vol. 13(22), pages 1-14, November.
    7. Jianguo Zhou & Xiaolei Xu & Xuejing Huo & Yushuo Li, 2019. "Forecasting Models for Wind Power Using Extreme-Point Symmetric Mode Decomposition and Artificial Neural Networks," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
    8. Marzena Niemczyk & Margalita Bachilava & Marek Wróbel & Marcin Jewiarz & Giorgi Kavtaradze & Nani Goginashvili, 2021. "Productivity and Biomass Properties of Poplar Clones Managed in Short-Rotation Culture as a Potential Fuelwood Source in Georgia," Energies, MDPI, vol. 14(11), pages 1-18, May.
    9. Iddio, E. & Wang, L. & Thomas, Y. & McMorrow, G. & Denzer, A., 2020. "Energy efficient operation and modeling for greenhouses: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    10. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    11. Agnieszka A. Pilarska & Piotr Boniecki & Małgorzata Idzior-Haufa & Maciej Zaborowicz & Krzysztof Pilarski & Andrzej Przybylak & Hanna Piekarska-Boniecka, 2021. "Image Analysis Methods in Classifying Selected Malting Barley Varieties by Neural Modelling," Agriculture, MDPI, vol. 11(8), pages 1-11, August.
    12. Marek Wróbel & Marcin Jewiarz & Krzysztof Mudryk & Adrian Knapczyk, 2020. "Influence of Raw Material Drying Temperature on the Scots Pine ( Pinus sylvestris L.) Biomass Agglomeration Process—A Preliminary Study," Energies, MDPI, vol. 13(7), pages 1-17, April.
    13. Rezania, Shahabaldin & Ponraj, Mohanadoss & Din, Mohd Fadhil Md & Songip, Ahmad Rahman & Sairan, Fadzlin Md & Chelliapan, Shreeshivadasan, 2015. "The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 943-954.
    14. Małgorzata Smuga-Kogut & Tomasz Kogut & Roksana Markiewicz & Adam Słowik, 2021. "Use of Machine Learning Methods for Predicting Amount of Bioethanol Obtained from Lignocellulosic Biomass with the Use of Ionic Liquids for Pretreatment," Energies, MDPI, vol. 14(1), pages 1-16, January.
    15. Yuewei Liu & Shenghui Zhang & Xuejun Chen & Jianzhou Wang, 2018. "Artificial Combined Model Based on Hybrid Nonlinear Neural Network Models and Statistics Linear Models—Research and Application for Wind Speed Forecasting," Sustainability, MDPI, vol. 10(12), pages 1-30, December.
    16. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    17. Monika Słupska & Arkadiusz Dyjakon & Roman Stopa, 2019. "Determination of Strength Properties of Energy Plants on the Example of Miscanthus × Giganteus , Rosa Multiflora and Salix Viminalis," Energies, MDPI, vol. 12(19), pages 1-19, September.
    18. Sławomir Francik & Adrian Knapczyk & Artur Knapczyk & Renata Francik, 2020. "Decision Support System for the Production of Miscanthus and Willow Briquettes," Energies, MDPI, vol. 13(6), pages 1-24, March.
    19. Marta Jach-Nocoń & Grzegorz Pełka & Wojciech Luboń & Tomasz Mirowski & Adam Nocoń & Przemysław Pachytel, 2021. "An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types," Energies, MDPI, vol. 14(15), pages 1-15, July.
    20. Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
    21. Katarzyna Szwedziak & Ewa Polańczyk & Żaneta Grzywacz & Gniewko Niedbała & Wiktoria Wojtkiewicz, 2020. "Neural Modeling of the Distribution of Protein, Water and Gluten in Wheat Grains during Storage," Sustainability, MDPI, vol. 12(12), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sławomir Francik & Adrian Knapczyk & Artur Knapczyk & Renata Francik, 2020. "Decision Support System for the Production of Miscanthus and Willow Briquettes," Energies, MDPI, vol. 13(6), pages 1-24, March.
    2. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    3. Shuren Chen & Yunfei Zhao & Zhong Tang & Hantao Ding & Zhan Su & Zhao Ding, 2022. "Structural Model of Straw Briquetting Machine with Vertical Ring Die and Optimization of Briquetting Performance," Agriculture, MDPI, vol. 12(5), pages 1-15, May.
    4. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    5. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    6. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).
    7. Chiara Bersani & Marco Fossa & Antonella Priarone & Roberto Sacile & Enrico Zero, 2021. "Model Predictive Control versus Traditional Relay Control in a High Energy Efficiency Greenhouse," Energies, MDPI, vol. 14(11), pages 1-21, June.
    8. Theodora Karanisa & Alexandre Amato & Renee Richer & Sara Abdul Majid & Cynthia Skelhorn & Sami Sayadi, 2021. "Agricultural Production in Qatar’s Hot Arid Climate," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    9. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Re Cecconi, F. & Moretti, N. & Tagliabue, L.C., 2019. "Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 266-277.
    11. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    12. Zhijiang Li & Decai Tang & Mang Han & Brandon J. Bethel, 2018. "Comprehensive Evaluation of Regional Sustainable Development Based on Data Envelopment Analysis," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
    13. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Hívila M. P. Marreiro & Rogério S. Peruchi & Riuzuani M. B. P. Lopes & Silvia L. F. Andersen & Sayonara A. Eliziário & Paulo Rotella Junior, 2021. "Empirical Studies on Biomass Briquette Production: A Literature Review," Energies, MDPI, vol. 14(24), pages 1-40, December.
    15. Sueyoshi, Toshiyuki & Mo, Fei & Wang, Derek D., 2022. "Sustainable development of countries all over the world and the impact of renewable energy," Renewable Energy, Elsevier, vol. 184(C), pages 320-331.
    16. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    17. Leonidas Sotirios Kyrgiakos & Georgios Kleftodimos & George Vlontzos & Panos M. Pardalos, 2023. "A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability," Operational Research, Springer, vol. 23(1), pages 1-38, March.
    18. Zhong, Shengyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Deng, Shuai & Li, Yang & Hussain, Sajjad & Wang, Xiaoyuan & Zhu, Jiebei, 2021. "Quantitative analysis of information interaction in building energy systems based on mutual information," Energy, Elsevier, vol. 214(C).
    19. Zaiwu Gong & Xiaoqing Chen, 2017. "Analysis of Interval Data Envelopment Efficiency Model Considering Different Distribution Characteristics—Based on Environmental Performance Evaluation of the Manufacturing Industry," Sustainability, MDPI, vol. 9(12), pages 1-25, November.
    20. Vida Dabkienė & Tomas Baležentis & Dalia Štreimikienė, 2022. "Reconciling the micro‐ and macro‐perspective in agricultural energy efficiency analysis for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 149-164, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:3062-:d:765192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.