IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v41y2015icp943-954.html
   My bibliography  Save this article

The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview

Author

Listed:
  • Rezania, Shahabaldin
  • Ponraj, Mohanadoss
  • Din, Mohd Fadhil Md
  • Songip, Ahmad Rahman
  • Sairan, Fadzlin Md
  • Chelliapan, Shreeshivadasan

Abstract

Water hyacinth was introduced as an ornamental crop in many countries more than a century ago, due to its attractive appearance and aesthetical value in the environment. Unfortunately, the flowers developed into invasive species due to their adaptability for a wide range of fresh water ecosystems and their interference with human activities. In the 21st century, they were considered as an alternative to fossil fuels, as many researchers found them capable of converting their content into fuel energy at less cost and recognized as an eco-friendly product. As water hyacinth is among the group of fastest growing plants, its biomass has the potential to become a potential renewable energy source and replace conventional fossil fuels, perhaps during the next decade. This is an essential mission to overcome the depletion of energy sources and also to fulfill the increasing demand of world energy. Instead of fuel energy, the dried biomass can also be fabricated as briquettes, which is suitable as co-firing agent in coal power plant. Thus, in future compacted biomass residues produced in the form of briquettes may decrease the dependence of coal to provide more energy The other application of water hyacinth into a co-compost material such as soil amendment to the sandy soil, can improve hydro-physical, chemical parameters of soil and will supply the growing crops with several nutrients. Water hyacinth has also drawn attention due to its bioremediation ability, capable of removing pollutants from domestic and industrial waste water effluents. Thus, the issue of water hyacinth should be evaluated from energy, engineering as well as environmental perspectives. In this review, the potential uses of water hyacinth are being classified and discussed.

Suggested Citation

  • Rezania, Shahabaldin & Ponraj, Mohanadoss & Din, Mohd Fadhil Md & Songip, Ahmad Rahman & Sairan, Fadzlin Md & Chelliapan, Shreeshivadasan, 2015. "The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 943-954.
  • Handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:943-954
    DOI: 10.1016/j.rser.2014.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114007795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Chen, Longjian & Xing, Li & Han, Lujia, 2009. "Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2689-2695, December.
    3. Basha, Syed Ameer & Gopal, K. Raja & Jebaraj, S., 2009. "A review on biodiesel production, combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1628-1634, August.
    4. Purohit, Pallav & Tripathi, Arun Kumar & Kandpal, Tara Chandra, 2006. "Energetics of coal substitution by briquettes of agricultural residues," Energy, Elsevier, vol. 31(8), pages 1321-1331.
    5. Narayanan, K.V. & Natarajan, E., 2007. "Experimental studies on cofiring of coal and biomass blends in India," Renewable Energy, Elsevier, vol. 32(15), pages 2548-2558.
    6. Nasir, N.F. & Daud, W.R.W. & Kamarudin, S.K. & Yaakob, Z., 2013. "Process system engineering in biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 631-639.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabbagh, Farzaneh & Muhamad, Ida Idayu, 2017. "Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 95-104.
    2. Farahat S. Moghanm & Antar El-Banna & Mohamed A. El-Esawi & Mohamed M. Abdel-Daim & Ahmed Mosa & Khaled A.A. Abdelaal, 2020. "Genotoxic and Anatomical Deteriorations Associated with Potentially Toxic Elements Accumulation in Water Hyacinth Grown in Drainage Water Resources," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    3. Obianuju P. Ilo & Mulala D. Simatele & S’phumelele L. Nkomo & Ntandoyenkosi M. Mkhize & Nagendra G. Prabhu, 2020. "The Benefits of Water Hyacinth ( Eichhornia crassipes ) for Southern Africa: A Review," Sustainability, MDPI, vol. 12(21), pages 1-20, November.
    4. Otong Nurhilal & Sahrul Hidayat & Dadan Sumiarsa & Risdiana Risdiana, 2023. "Natural Biomass-Derived Porous Carbon from Water Hyacinth Used as Composite Cathode for Lithium Sulfur Batteries," Sustainability, MDPI, vol. 15(2), pages 1-9, January.
    5. Rezania, Shahabaldin & Md Din, Mohd Fadhil & Kamaruddin, Siti Fatimah & Taib, Shazwin Mat & Singh, Lakhveer & Yong, Ee Ling & Dahalan, Farrah Aini, 2016. "Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production," Energy, Elsevier, vol. 111(C), pages 768-773.
    6. Pin, Lantos A. & Pennink, Bartjan J.W. & Balsters, Herman & Sianipar, Corinthias P.M., 2021. "Technological appropriateness of biomass production in rural settings: Addressing water hyacinths (E. crassipes) problem in Lake Tondano, Indonesia," Technology in Society, Elsevier, vol. 66(C).
    7. Sławomir Francik & Bogusława Łapczyńska-Kordon & Norbert Pedryc & Wojciech Szewczyk & Renata Francik & Zbigniew Ślipek, 2022. "The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    8. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    9. Zanxin Wang & Fangyuan Zheng & Shiya Xue, 2019. "The Economic Feasibility of the Valorization of Water Hyacinth for Bioethanol Production," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    10. Shafaqat Ali & Zohaib Abbas & Muhammad Rizwan & Ihsan Elahi Zaheer & İlkay Yavaş & Aydın Ünay & Mohamed M. Abdel-DAIM & May Bin-Jumah & Mirza Hasanuzzaman & Dimitris Kalderis, 2020. "Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review," Sustainability, MDPI, vol. 12(5), pages 1-33, March.
    11. Román, S. & Ledesma, B. & Álvarez, A. & Coronella, C. & Qaramaleki, S.V., 2020. "Suitability of hydrothermal carbonization to convert water hyacinth to added-value products," Renewable Energy, Elsevier, vol. 146(C), pages 1649-1658.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    2. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul & Aghili, Nasim, 2013. "The scenario of greenhouse gases reduction in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 400-409.
    3. Md Tanvir Alam & Jang-Soo Lee & Sang-Yeop Lee & Dhruba Bhatta & Kunio Yoshikawa & Yong-Chil Seo, 2019. "Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass," Energies, MDPI, vol. 12(22), pages 1-17, November.
    4. Obi, Okey Francis, 2015. "Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1749-1758.
    5. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik & Naqvi, Salman Raza, 2017. "Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis," Applied Energy, Elsevier, vol. 201(C), pages 363-370.
    6. Xin Zhang & Yun-Ze Li & Ao-Bing Wang & Li-Jun Gao & Hui-Juan Xu & Xian-Wen Ning, 2020. "The Development Strategies and Technology Roadmap of Bioenergy for a Typical Region: A Case Study in the Beijing-Tianjin-Hebei Region in China," Energies, MDPI, vol. 13(4), pages 1-25, February.
    7. Vargas-Moreno, J.M. & Callejón-Ferre, A.J. & Pérez-Alonso, J. & Velázquez-Martí, B., 2012. "A review of the mathematical models for predicting the heating value of biomass materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3065-3083.
    8. Meihui Li & Na Luo & Yi Lu, 2017. "Biomass Energy Technological Paradigm (BETP): Trends in This Sector," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
    9. Gangil, Sandip, 2015. "Benefits of weakening in thermogravimetric signals of hemicellulose and lignin for producing briquettes from soybean crop residue," Energy, Elsevier, vol. 81(C), pages 729-737.
    10. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    11. Foo, K.Y. & Hameed, B.H., 2010. "Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1445-1452, June.
    12. Sahu, S.G. & Chakraborty, N. & Sarkar, P., 2014. "Coal–biomass co-combustion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 575-586.
    13. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    14. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Małgorzata Wzorek & Robert Junga & Ersel Yilmaz & Bohdan Bozhenko, 2021. "Thermal Decomposition of Olive-Mill Byproducts: A TG-FTIR Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
    16. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    17. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    18. Carmen de la Cruz-Lovera & Francisco Manzano-Agugliaro & Esther Salmerón-Manzano & José-Luis de la Cruz-Fernández & Alberto-Jesus Perea-Moreno, 2019. "Date Seeds ( Phoenix dactylifera L. ) Valorization for Boilers in the Mediterranean Climate," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    19. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    20. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:943-954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.