IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2756-d759397.html
   My bibliography  Save this article

Transition State Matrices Approach for Trajectory Segmentation Based on Transport Mode Change Criteria

Author

Listed:
  • Martina Erdelić

    (Faculty of Transport and Traffic Sciences, University of Zagreb, Vukelićeva 4, 10000 Zagreb, Croatia)

  • Tonči Carić

    (Faculty of Transport and Traffic Sciences, University of Zagreb, Vukelićeva 4, 10000 Zagreb, Croatia)

  • Tomislav Erdelić

    (Faculty of Transport and Traffic Sciences, University of Zagreb, Vukelićeva 4, 10000 Zagreb, Croatia)

  • Leo Tišljarić

    (Faculty of Transport and Traffic Sciences, University of Zagreb, Vukelićeva 4, 10000 Zagreb, Croatia)

Abstract

Identifying distribution of users’ mobility is an essential part of transport planning and traffic demand estimation. With the increase in the usage of mobile devices, they have become a valuable source of traffic mobility data. Raw data contain only specific traffic information, such as position. To extract additional information such as transport mode, collected data need to be further processed. Trajectory needs to be divided into several meaningful consecutive segments according to some criteria to determine transport mode change point. Existing algorithms for trajectory segmentation based on the transport mode change most often use predefined knowledge-based rules to create trajectory segments, i.e., rules based on defined maximum pedestrian speed or the detection of pedestrian segment between two consecutive transport modes. This paper aims to develop a method that segments trajectory based on the transport mode change in real time without preassumed rules. Instead of rules, transition patterns are detected during the transition from one transport mode to another. Transition State Matrices (TSM) were used to automatically detect the transport mode change point in the trajectory. The developed method is based on the sensor data collected from mobile devices. After testing and validating the method, an overall accuracy of 98 % and 96 % , respectively, was achieved. As higher accuracy of trajectory segmentation means better and more homogeneous data, applying this method during the data collection adds additional value to the data.

Suggested Citation

  • Martina Erdelić & Tonči Carić & Tomislav Erdelić & Leo Tišljarić, 2022. "Transition State Matrices Approach for Trajectory Segmentation Based on Transport Mode Change Criteria," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2756-:d:759397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2756/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2756/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alica Kalašová & Kristián Čulík & Miloš Poliak & Zuzana Otahálová, 2021. "Smart Parking Applications and Its Efficiency," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    2. Schakenbos, Rik & Paix, Lissy La & Nijenstein, Sandra & Geurs, Karst T., 2016. "Valuation of a transfer in a multimodal public transport trip," Transport Policy, Elsevier, vol. 46(C), pages 72-81.
    3. Eui-Hwan Chung & Amer Shalaby, 2005. "A Trip Reconstruction Tool for GPS-based Personal Travel Surveys," Transportation Planning and Technology, Taylor & Francis Journals, vol. 28(5), pages 381-401, August.
    4. Augustus Ababio-Donkor & Wafaa Saleh & Achille Fonzone, 2020. "Understanding transport mode choice for commuting: the role of affect," Transportation Planning and Technology, Taylor & Francis Journals, vol. 43(4), pages 385-403, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ron Dalumpines & Darren M. Scott, 2017. "Making mode detection transferable: extracting activity and travel episodes from GPS data using the multinomial logit model and Python," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(5), pages 523-539, July.
    2. Marek Bauer & Piotr Kisielewski, 2021. "The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of Tarnow," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    3. Tao Feng & Harry J.P. Timmermans, 2016. "Comparison of advanced imputation algorithms for detection of transportation mode and activity episode using GPS data," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(2), pages 180-194, March.
    4. Biao Yin & Fabien Leurent, 2022. "Estimation of Transfer Time from Multimodal Transit Services in the Paris Region," Post-Print hal-03841390, HAL.
    5. Xiang Li & Qipeng Yan & Yafeng Ma & Chen Luo, 2023. "Spatially Varying Impacts of Built Environment on Transfer Ridership of Metro and Bus Systems," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    6. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
    7. Timmer, Sebastian & Merfeld, Katrin & Henkel, Sven, 2023. "Exploring motivations for multimodal commuting: A hierarchical means-end chain analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    8. Nielsen, Otto Anker & Eltved, Morten & Anderson, Marie Karen & Prato, Carlo Giacomo, 2021. "Relevance of detailed transfer attributes in large-scale multimodal route choice models for metropolitan public transport passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 76-92.
    9. Vladislav Krivda & Jan Petru & David Macha & Jakub Novak, 2021. "Use of Microsimulation Traffic Models as Means for Ensuring Public Transport Sustainability and Accessibility," Sustainability, MDPI, vol. 13(5), pages 1-38, March.
    10. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
    11. Muhammad Shafique & Eiji Hato, 2015. "Use of acceleration data for transportation mode prediction," Transportation, Springer, vol. 42(1), pages 163-188, January.
    12. Moiseeva, Anastasia & Timmermans, Harry, 2010. "Imputing relevant information from multi-day GPS tracers for retail planning and management using data fusion and context-sensitive learning," Journal of Retailing and Consumer Services, Elsevier, vol. 17(3), pages 189-199.
    13. Liu, Yang & Feng, Tao & Shi, Zhuangbin & He, Mingwei, 2022. "Understanding the route choice behaviour of metro-bikeshare users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 460-475.
    14. Papinski, Dominik & Scott, Darren M., 2011. "A GIS-based toolkit for route choice analysis," Journal of Transport Geography, Elsevier, vol. 19(3), pages 434-442.
    15. Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
    16. Yun Xiang & Chengcheng Xu & Weijie Yu & Shuyi Wang & Xuedong Hua & Wei Wang, 2019. "Investigating Dominant Trip Distance for Intercity Passenger Transport Mode Using Large-Scale Location-Based Service Data," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    17. Nathalie Lenoir & Isabelle Laplace, 2017. "Beyond traditional value-of-time: passenger behavior for multimodal door-to-door travels in the age of information technologies," Post-Print hal-01704461, HAL.
    18. Yue Ding & Ruimin Li & Xiaokun Wang & Joshua Schmid, 2022. "Heterogeneity of autonomous vehicle adoption behavior due to peer effects and prior-AV knowledge," Transportation, Springer, vol. 49(6), pages 1837-1860, December.
    19. Wiśniewski Szymon, 2017. "The accessibility of Poland’s Space to the Trans-European Transport Network," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 21(3), pages 96-106, September.
    20. Rajat Verma & Eunhan Ka & Satish V. Ukkusuri, 2024. "Long-term forecasts of statewide travel demand patterns using large-scale mobile phone GPS data: A case study of Indiana," Papers 2404.13211, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2756-:d:759397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.