IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03841390.html
   My bibliography  Save this paper

Estimation of Transfer Time from Multimodal Transit Services in the Paris Region

Author

Listed:
  • Biao Yin

    (LVMT - Laboratoire Ville, Mobilité, Transport - ENPC - École des Ponts ParisTech - Université Gustave Eiffel)

  • Fabien Leurent

    (CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique)

Abstract

A reliable public transport system is beneficial for people traveling in the metropolitan area. Transfer time in multimodal transit networks has been highlighted as one of the measures of public transport service quality. In this paper, we propose a novel method to estimate the passengers' transfer time between the transit modes (i.e., train, metro, and bus) based on the 2018 Household Travel Survey in the Paris region, France. The transit trips with a single transit leg are primarily studied, wherein average wait time and mode speeds are estimated through an integrated linear regression model. Based on these inferences, transfer time is deduced within the trips of multiple transit legs. The decomposition procedure of journey time facilitates the estimation of the time components, and reveals the transfer variability in mode, time, and space. From the results, we find that the transfer to the railway modes, especially to the metro, costs less time on average than the transfer to the bus in the study area. The transfer patterns in the morning and evening peak hours are different regarding the transfer duration and locations. Lastly, the results' reliability, method scalability, and potential applications are discussed in detail.

Suggested Citation

  • Biao Yin & Fabien Leurent, 2022. "Estimation of Transfer Time from Multimodal Transit Services in the Paris Region," Post-Print hal-03841390, HAL.
  • Handle: RePEc:hal:journl:hal-03841390
    DOI: 10.3390/futuretransp2040049
    Note: View the original document on HAL open archive server: https://hal.science/hal-03841390
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03841390/document
    Download Restriction: no

    File URL: https://libkey.io/10.3390/futuretransp2040049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Knoppers & Theo Muller, 1995. "Optimized Transfer Opportunities in Public Transport," Transportation Science, INFORMS, vol. 29(1), pages 101-105, February.
    2. Krygsman, Stephan & Dijst, Martin & Arentze, Theo, 2004. "Multimodal public transport: an analysis of travel time elements and the interconnectivity ratio," Transport Policy, Elsevier, vol. 11(3), pages 265-275, July.
    3. Schakenbos, Rik & Paix, Lissy La & Nijenstein, Sandra & Geurs, Karst T., 2016. "Valuation of a transfer in a multimodal public transport trip," Transport Policy, Elsevier, vol. 46(C), pages 72-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Bauer & Piotr Kisielewski, 2021. "The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of Tarnow," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    2. Lois, David & Monzón, Andrés & Hernández, Sara, 2018. "Analysis of satisfaction factors at urban transport interchanges: Measuring travellers’ attitudes to information, security and waiting," Transport Policy, Elsevier, vol. 67(C), pages 49-56.
    3. Luyu Liu & Harvey J Miller, 2021. "Measuring risk of missing transfers in public transit systems using high-resolution schedule and real-time bus location data," Urban Studies, Urban Studies Journal Limited, vol. 58(15), pages 3140-3156, November.
    4. Bayarma Alexander & Christa Hubers & Tim Schwanen & Martin Dijst & Dick Ettema, 2011. "Anything, Anywhere, Anytime? Developing Indicators to Assess the Spatial and Temporal Fragmentation of Activities," Environment and Planning B, , vol. 38(4), pages 678-705, August.
    5. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    6. Sanko, Nobuhiro, 2020. "Activity-end access/egress modal choices between stations and campuses located on a hillside," Research in Transportation Economics, Elsevier, vol. 83(C).
    7. Lindsey, Marshall & Schofer, Joseph L. & Durango-Cohen, Pablo & Gray, Kimberly A., 2010. "Relationship between proximity to transit and ridership for journey-to-work trips in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 697-709, November.
    8. Weliwitiya, Hesara & Rose, Geoffrey & Johnson, Marilyn, 2019. "Bicycle train intermodality: Effects of demography, station characteristics and the built environment," Journal of Transport Geography, Elsevier, vol. 74(C), pages 395-404.
    9. Rachel C. W. Wong & Tony W. Y. Yuen & Kwok Wah Fung & Janny M. Y. Leung, 2008. "Optimizing Timetable Synchronization for Rail Mass Transit," Transportation Science, INFORMS, vol. 42(1), pages 57-69, February.
    10. Kim, Myungseob (Edward) & Schonfeld, Paul, 2014. "Integration of conventional and flexible bus services with timed transfers," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 76-97.
    11. Castelli, Lorenzo & Pesenti, Raffaele & Ukovich, Walter, 2004. "Scheduling multimodal transportation systems," European Journal of Operational Research, Elsevier, vol. 155(3), pages 603-615, June.
    12. Yan Yang & Qiang Zhou, 2023. "Modeling and Simulation of Crude Oil Sea–River Transshipment System in China’s Yangtze River Basin," Energies, MDPI, vol. 16(6), pages 1-16, March.
    13. Romero, Fernando & Gomez, Juan & Paez, Antonio & Vassallo, José Manuel, 2020. "Toll roads vs. Public transportation: A study on the acceptance of congestion-calming measures in Madrid," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 319-342.
    14. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part II: Solution algorithm for large-scale problems," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 172-192.
    15. Asadi Bagloee, Saeed & Ceder, Avishai (Avi), 2011. "Transit-network design methodology for actual-size road networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1787-1804.
    16. Bian, Zheyong & Liu, Xiang & Bai, Yun, 2020. "Mechanism design for on-demand first-mile ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 77-117.
    17. Yi-Kuei Lin & Thi-Phuong Nguyen & Louis Cheng-Lu Yeng, 2022. "Reliability evaluation of a stochastic multimodal transport network under time and budget considerations," Annals of Operations Research, Springer, vol. 312(1), pages 369-387, May.
    18. Wey, Wann-Ming & Kang, Chao-Chung & Khan, Haider A., 2020. "Evaluating the effects of environmental factors and a transfer fare discount policy on the performance of an urban metro system," Transport Policy, Elsevier, vol. 97(C), pages 172-185.
    19. Meng, Meng & Rau, Andreas & Mahardhika, Hita, 2018. "Public transport travel time perception: Effects of socioeconomic characteristics, trip characteristics and facility usage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 24-37.
    20. L. Samková, 2023. "Management of integrated passenger transport system and its role in tourism development," Economics Working Papers 2023-03, University of South Bohemia in Ceske Budejovice, Faculty of Economics.

    More about this item

    Keywords

    multimodal transit; average wait time; transit speed; transfer time; linear regression model;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03841390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.