IDEAS home Printed from https://ideas.repec.org/a/eee/telpol/v39y2015i3p363-373.html
   My bibliography  Save this article

The SMS–GPS-Trip method: A new method for collecting trip information in travel behavior research

Author

Listed:
  • Reinau, Kristian Hegner
  • Harder, Henrik
  • Weber, Michael

Abstract

This article presents a new method for collecting travel behavior data, based on a combination of GPS tracking and SMS technology, coined the SMS–GPS-Trip method. The state-of-the-art method for collecting data for activity based traffic models is a combination of travel diaries and GPS tracking data, an approach which is not well suited for capturing data on experiences surrounding trips. Currently increasing research is being done on how to incorporate such data in traffic models, and there is therefore a need for a method, which is suited to collect such data. The new method presented in this article builds on ideas from experience sampling methods (ESM) and it is well suited specifically for collecting such experience data. Given the use of SMS technology, this method makes it possible to reach a wide range of respondents. The usefulness of the new method is proven on a theoretical level and illustrated in practice through a case study.

Suggested Citation

  • Reinau, Kristian Hegner & Harder, Henrik & Weber, Michael, 2015. "The SMS–GPS-Trip method: A new method for collecting trip information in travel behavior research," Telecommunications Policy, Elsevier, vol. 39(3), pages 363-373.
  • Handle: RePEc:eee:telpol:v:39:y:2015:i:3:p:363-373
    DOI: 10.1016/j.telpol.2014.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308596114000950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.telpol.2014.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Cynthia & Gong, Hongmian & Lawson, Catherine & Bialostozky, Evan, 2010. "Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 830-840, December.
    2. Eui-Hwan Chung & Amer Shalaby, 2005. "A Trip Reconstruction Tool for GPS-based Personal Travel Surveys," Transportation Planning and Technology, Taylor & Francis Journals, vol. 28(5), pages 381-401, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Shafique & Eiji Hato, 2015. "Use of acceleration data for transportation mode prediction," Transportation, Springer, vol. 42(1), pages 163-188, January.
    2. Satomi Kimijima & Masahiko Nagai, 2017. "Human Mobility Analysis for Extracting Local Interactions under Rapid Socio-Economic Transformation in Dawei, Myanmar," Sustainability, MDPI, vol. 9(9), pages 1-14, September.
    3. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    4. Ron Dalumpines & Darren M. Scott, 2017. "Making mode detection transferable: extracting activity and travel episodes from GPS data using the multinomial logit model and Python," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(5), pages 523-539, July.
    5. Yijing Lu & Lei Zhang, 2015. "Imputing trip purposes for long-distance travel," Transportation, Springer, vol. 42(4), pages 581-595, July.
    6. Chen, Cynthia & Gong, Hongmian & Lawson, Catherine & Bialostozky, Evan, 2010. "Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 830-840, December.
    7. Roy, Avipsa & Fuller, Daniel & Nelson, Trisalyn & Kedron, Peter, 2022. "Assessing the role of geographic context in transportation mode detection from GPS data," Journal of Transport Geography, Elsevier, vol. 100(C).
    8. Tao Feng & Harry J.P. Timmermans, 2016. "Comparison of advanced imputation algorithms for detection of transportation mode and activity episode using GPS data," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(2), pages 180-194, March.
    9. Wenyun Tang & David Levinson, 2014. "An empirical study of the deviation between actual and shortest travel time paths," Working Papers 000125, University of Minnesota: Nexus Research Group.
    10. Bulu, Melih, 2014. "Upgrading a city via technology," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 63-67.
    11. Adrian C. Prelipcean & Gyözö Gidófalvi & Yusak O. Susilo, 2017. "Transportation mode detection – an in-depth review of applicability and reliability," Transport Reviews, Taylor & Francis Journals, vol. 37(4), pages 442-464, July.
    12. Kemajou, Armel & Jaligot, Rémi & Bosch, Martí & Chenal, Jérôme, 2019. "Assessing motorcycle taxi activity in Cameroon using GPS devices," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    13. Bwambale, Andrew & Choudhury, Charisma F. & Hess, Stephane, 2019. "Modelling departure time choice using mobile phone data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 424-439.
    14. Nour, Akram & Hellinga, Bruce & Casello, Jeffrey, 2016. "Classification of automobile and transit trips from Smartphone data: Enhancing accuracy using spatial statistics and GIS," Journal of Transport Geography, Elsevier, vol. 51(C), pages 36-44.
    15. Shen, Yue & Kwan, Mei-Po & Chai, Yanwei, 2013. "Investigating commuting flexibility with GPS data and 3D geovisualization: a case study of Beijing, China," Journal of Transport Geography, Elsevier, vol. 32(C), pages 1-11.
    16. Mariem Fekih & Tom Bellemans & Zbigniew Smoreda & Patrick Bonnel & Angelo Furno & Stéphane Galland, 2021. "A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France)," Transportation, Springer, vol. 48(4), pages 1671-1702, August.
    17. Iago C. Cavalcante & Rodolfo I. Meneguette & Renato H. Torres & Leandro Y. Mano & Vinícius P. Gonçalves & Jó Ueyama & Gustavo Pessin & Georges D. Amvame Nze & Geraldo P. Rocha Filho, 2022. "Federated System for Transport Mode Detection," Energies, MDPI, vol. 15(23), pages 1-17, December.
    18. Peter Widhalm & Yingxiang Yang & Michael Ulm & Shounak Athavale & Marta González, 2015. "Discovering urban activity patterns in cell phone data," Transportation, Springer, vol. 42(4), pages 597-623, July.
    19. Xiaofeng Lou & Changhai Peng, 2022. "Planning of a comprehensive transportation system in Ma’anshan based on mobile phone signaling data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9380-9406, July.
    20. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:telpol:v:39:y:2015:i:3:p:363-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30471/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.