IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v100y2022ics0966692322000539.html
   My bibliography  Save this article

Assessing the role of geographic context in transportation mode detection from GPS data

Author

Listed:
  • Roy, Avipsa
  • Fuller, Daniel
  • Nelson, Trisalyn
  • Kedron, Peter

Abstract

The increasing availability of health monitoring devices and smartphones has created an opportunity for researchers to access high-resolution (spatial and temporal) mobility data for understanding travel behavior in cities. Although information from GPS data has been used in several studies to detect transportation modes, there is a research gap in understanding the role of geographic context in transportation mode detection. Integrating the geography in which mobility occurs, provides context clues that may allow models predicting transportation modes to be more generalizable. Our goals are first, to develop a data-driven modeling framework for transportation mode detection using GPS mobility data along with geographic context, and second, to assess how model accuracy and generalizability varies upon adding geographic context. To this extent we extracted features from raw GPS mobility data (speed, altitude, turning angle and net displacement) and integrated context in the form of geographic features to classify active (i.e. walk/bike), public (i.e. bus/train), and private (i.e. car) transportation modes in three different Canadian cities - Montreal, St. Johns, and Vancouver. To assess the role of integrating geographic context in mode detection, we adopted two different modeling approaches – generalized and context-specific, and compared results using random forests, extreme gradient boost, and multilayer perceptron classifiers. Our results indicate that for context-specific models the highest classification accuracy improved by 64% for Montreal, by 74% for St. John's and by 77% for Vancouver compared to the generalized model. We also found that the multilayer perceptron (96%) achieved the highest classification accuracy upon adding contextual variables compared to random forests (94.6%) and extreme gradient boost (93.3%) classifier. Our study highlights that adding contextual information specific to a city's geography can improve the predictive accuracy of transportation mode detection models, however, in case of limited knowledge about the geographic setting of a study area, a generalized model combining GPS data from several cities may still be useful for predicting modes from trip data.

Suggested Citation

  • Roy, Avipsa & Fuller, Daniel & Nelson, Trisalyn & Kedron, Peter, 2022. "Assessing the role of geographic context in transportation mode detection from GPS data," Journal of Transport Geography, Elsevier, vol. 100(C).
  • Handle: RePEc:eee:jotrge:v:100:y:2022:i:c:s0966692322000539
    DOI: 10.1016/j.jtrangeo.2022.103330
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692322000539
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2022.103330?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Böcker, Lars & Dijst, Martin & Faber, Jan & Helbich, Marco, 2015. "En-route weather and place valuations for different transport mode users," Journal of Transport Geography, Elsevier, vol. 47(C), pages 128-138.
    3. Páez, Antonio & Whalen, Kate, 2010. "Enjoyment of commute: A comparison of different transportation modes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 537-549, August.
    4. Li Shen & Peter R. Stopher, 2014. "Review of GPS Travel Survey and GPS Data-Processing Methods," Transport Reviews, Taylor & Francis Journals, vol. 34(3), pages 316-334, May.
    5. Chen, Cynthia & Gong, Hongmian & Lawson, Catherine & Bialostozky, Evan, 2010. "Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 830-840, December.
    6. repec:cdl:uctcwp:qt4nq9r1c9 is not listed on IDEAS
    7. Jestico, Ben & Nelson, Trisalyn & Winters, Meghan, 2016. "Mapping ridership using crowdsourced cycling data," Journal of Transport Geography, Elsevier, vol. 52(C), pages 90-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Ye & Stüdeli, Emanuel & Raubal, Martin, 2023. "Evaluating geospatial context information for travel mode detection," Journal of Transport Geography, Elsevier, vol. 113(C).
    2. Lee, Jaehyung & Kim, Jinhee, 2025. "Where can automated mobility-on-demand service thrive: A combined method of latent class choice and random forest," Transport Policy, Elsevier, vol. 165(C), pages 127-149.
    3. Paria Sadeghian & Arman Golshan & Mia Xiaoyun Zhao & Johan Håkansson, 2025. "A deep semi-supervised machine learning algorithm for detecting transportation modes based on GPS tracking data," Transportation, Springer, vol. 52(4), pages 1745-1765, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    2. Wang, Fenglong & Mao, Zidan & Wang, Donggen, 2020. "Residential relocation and travel satisfaction change: An empirical study in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 341-353.
    3. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    4. Gao, Jie & Kamphuis, Carlijn B.M. & Helbich, Marco & Ettema, Dick, 2020. "What is ‘neighborhood walkability’? How the built environment differently correlates with walking for different purposes and with walking on weekdays and weekends," Journal of Transport Geography, Elsevier, vol. 88(C).
    5. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    6. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    7. Collins, Patricia A. & MacFarlane, Robert, 2018. "Evaluating the determinants of switching to public transit in an automobile-oriented mid-sized Canadian city: A longitudinal analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 682-695.
    8. Munira, Sirajum & Sener, Ipek N., 2020. "A geographically weighted regression model to examine the spatial variation of the socioeconomic and land-use factors associated with Strava bike activity in Austin, Texas," Journal of Transport Geography, Elsevier, vol. 88(C).
    9. De Vos, Jonas, 2018. "Do people travel with their preferred travel mode? Analysing the extent of travel mode dissonance and its effect on travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 261-274.
    10. Hong, Ye & Stüdeli, Emanuel & Raubal, Martin, 2023. "Evaluating geospatial context information for travel mode detection," Journal of Transport Geography, Elsevier, vol. 113(C).
    11. Senes, Giulio & Rovelli, Roberto & Bertoni, Danilo & Arata, Laura & Fumagalli, Natalia & Toccolini, Alessandro, 2017. "Factors influencing greenways use: Definition of a method for estimation in the Italian context," Journal of Transport Geography, Elsevier, vol. 65(C), pages 175-187.
    12. De Vos, Jonas & Witlox, Frank, 2017. "Travel satisfaction revisited. On the pivotal role of travel satisfaction in conceptualising a travel behaviour process," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 364-373.
    13. Van Acker, Veronique & Ho, Loan & Mulley, Corinne, 2021. "“Satisfaction lies in the effort”. Is Gandhi’s quote also true for satisfaction with commuting?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 214-227.
    14. Sun, Bindong & Liu, Jiahang & Yin, Chun & Cao, Jason, 2022. "Residential and workplace neighborhood environments and life satisfaction: Exploring chain-mediation effects of activity and place satisfaction," Journal of Transport Geography, Elsevier, vol. 104(C).
    15. Mariem Fekih & Tom Bellemans & Zbigniew Smoreda & Patrick Bonnel & Angelo Furno & Stéphane Galland, 2021. "A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France)," Transportation, Springer, vol. 48(4), pages 1671-1702, August.
    16. Hook, Hannah & De Vos, Jonas & Van Acker, Veronique & Witlox, Frank, 2021. "Do travel options influence how commute time satisfaction relates to the residential built environment?," Journal of Transport Geography, Elsevier, vol. 92(C).
    17. Timmer, Sebastian & Bösehans, Gustav & Henkel, Sven, 2023. "Behavioural norms or personal gains? – An empirical analysis of commuters‘ intention to switch to multimodal mobility behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    18. Dong Wei & Xiaoshu Cao & Miaomiao Wang, 2019. "What Determines the Psychological Well-Being during Commute in Xi’an: The Role of Built Environment, Travel Attitude, and Travel Characteristics," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    19. David S Vale & Mauro Pereira, 2017. "The influence of the impedance function on gravity-based pedestrian accessibility measures: A comparative analysis," Environment and Planning B, , vol. 44(4), pages 740-763, July.
    20. Danielle McCool & Peter Lugtig & Barry Schouten, 2024. "Maximum interpolable gap length in missing smartphone-based GPS mobility data," Transportation, Springer, vol. 51(1), pages 297-327, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:100:y:2022:i:c:s0966692322000539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.