IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v88y2020ics096669232030942x.html
   My bibliography  Save this article

A geographically weighted regression model to examine the spatial variation of the socioeconomic and land-use factors associated with Strava bike activity in Austin, Texas

Author

Listed:
  • Munira, Sirajum
  • Sener, Ipek N.

Abstract

Despite evidence showing the spatial nonstationarity of the determinants of bike activity, very few studies have addressed the phenomena, probably due to the limited sample size of the traditional count data. To address this gap, this study demonstrated the applicability of Strava bike activity data by developing a geographically weighted Poisson regression (GWPR) model that can reveal how the influence of socioeconomic and land-use factors vary across a region. The city of Austin was selected as a case study, and Strava bike volume was gleaned from 1494 intersections. The representativeness of the Strava data was first examined by comparing those data with the video-based actual bicycle volume data from 43 intersections in the study area. Despite the high deviation in several locations, Strava volume exhibited moderate linear relationships with actual volume. The GWPR model developed in this study outperformed the traditional global model and revealed significant spatial variability of nine variables related to age, income, education, transit stops, hub locations, offices, schools, trails, and sidewalk facilities. Notable spatial variations on bike activity were observed across the study area in terms of magnitude, direction, and significance of the impact for all model variables. The analysis and discussion offer guidance to practitioners and policy makers in tailoring policies and programs that consider the spatial context. The study also provides insights for understanding the potential use of crowdsourced data in examining bike activity, especially when resources are limited.

Suggested Citation

  • Munira, Sirajum & Sener, Ipek N., 2020. "A geographically weighted regression model to examine the spatial variation of the socioeconomic and land-use factors associated with Strava bike activity in Austin, Texas," Journal of Transport Geography, Elsevier, vol. 88(C).
  • Handle: RePEc:eee:jotrge:v:88:y:2020:i:c:s096669232030942x
    DOI: 10.1016/j.jtrangeo.2020.102865
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096669232030942X
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Griffin, Greg Phillip & Jiao, Junfeng, 2015. "Where does bicycling for health happen? Analysing volunteered geographic information through place and plexus," SocArXiv 5gy3u, Center for Open Science.
    3. Strauss, Jillian & Miranda-Moreno, Luis F., 2013. "Spatial modeling of bicycle activity at signalized intersections," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 47-58.
    4. Selby, Brent & Kockelman, Kara M., 2013. "Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 29(C), pages 24-32.
    5. Griswold, Julia B. & Medury, Aditya & Schneider, Robert J., 2011. "Pilot Models for Estimating Bicycle Intersection Volumes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt380855q6, Institute of Transportation Studies, UC Berkeley.
    6. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    7. Jestico, Ben & Nelson, Trisalyn & Winters, Meghan, 2016. "Mapping ridership using crowdsourced cycling data," Journal of Transport Geography, Elsevier, vol. 52(C), pages 90-97.
    8. Hochmair, Hartwig H. & Bardin, Eric & Ahmouda, Ahmed, 2019. "Estimating bicycle trip volume for Miami-Dade county from Strava tracking data," Journal of Transport Geography, Elsevier, vol. 75(C), pages 58-69.
    9. Feng Xie & David Levinson, 2010. "How streetcars shaped suburbanization: a Granger causality analysis of land use and transit in the Twin Cities," Journal of Economic Geography, Oxford University Press, vol. 10(3), pages 453-470, May.
    10. Yang, Hongtai & Lu, Xiaozhao & Cherry, Christopher & Liu, Xiaohan & Li, Yanlai, 2017. "Spatial variations in active mode trip volume at intersections: a local analysis utilizing geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 64(C), pages 184-194.
    11. Zhang, Dapeng & Wang, Xiaokun (Cara), 2014. "Transit ridership estimation with network Kriging: a case study of Second Avenue Subway, NYC," Journal of Transport Geography, Elsevier, vol. 41(C), pages 107-115.
    12. Yanjie Ji & Xinwei Ma & Mingyuan Yang & Yuchuan Jin & Liangpeng Gao, 2018. "Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    13. Ryus, Paul & Ferguson, Erin & Laustsen, Kelly M. & Schneider, Robert J. & Proulx, Frank R. & Hull, Tony & Miranda-Moreno, Luis, 2014. "Guidebook on Pedestrian and Bicycle Volume Data Collection," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt11q5p33w, Institute of Transportation Studies, UC Berkeley.
    14. Blainey, Simon, 2010. "Trip end models of local rail demand in England and Wales," Journal of Transport Geography, Elsevier, vol. 18(1), pages 153-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xudong & Cheng, Zhanhong & Trépanier, Martin & Sun, Lijun, 2021. "Modeling bike-sharing demand using a regression model with spatially varying coefficients," Journal of Transport Geography, Elsevier, vol. 93(C).
    2. Ali Al-Ramini & Mohammad A Takallou & Daniel P Piatkowski & Fadi Alsaleem, 2022. "Quantifying changes in bicycle volumes using crowdsourced data," Environment and Planning B, , vol. 49(6), pages 1612-1630, July.
    3. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Mintu Miah & Kate Kyung Hyun & Stephen P. Mattingly & Hannan Khan, 2023. "Estimation of daily bicycle traffic using machine and deep learning techniques," Transportation, Springer, vol. 50(5), pages 1631-1684, October.
    2. Hochmair, Hartwig H. & Bardin, Eric & Ahmouda, Ahmed, 2019. "Estimating bicycle trip volume for Miami-Dade county from Strava tracking data," Journal of Transport Geography, Elsevier, vol. 75(C), pages 58-69.
    3. Yang, Hongtai & Lu, Xiaozhao & Cherry, Christopher & Liu, Xiaohan & Li, Yanlai, 2017. "Spatial variations in active mode trip volume at intersections: a local analysis utilizing geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 64(C), pages 184-194.
    4. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    5. Alattar, Mohammad Anwar & Cottrill, Caitlin & Beecroft, Mark, 2021. "Public participation geographic information system (PPGIS) as a method for active travel data acquisition," Journal of Transport Geography, Elsevier, vol. 96(C).
    6. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    7. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
    8. Cheng, Long & Shi, Kunbo & De Vos, Jonas & Cao, Mengqiu & Witlox, Frank, 2021. "Examining the spatially heterogeneous effects of the built environment on walking among older adults," Transport Policy, Elsevier, vol. 100(C), pages 21-30.
    9. Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
    10. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.
    11. Stella R. Harden & Nadine Schuurman & Peter Keller & Scott A. Lear, 2022. "Neighborhood Characteristics Associated with Running in Metro Vancouver: A Preliminary Analysis," IJERPH, MDPI, vol. 19(21), pages 1-13, November.
    12. Raturi, Varun & Hong, Jinhyun & McArthur, David Philip & Livingston, Mark, 2021. "The impact of privacy protection measures on the utility of crowdsourced cycling data," Journal of Transport Geography, Elsevier, vol. 92(C).
    13. Jestico, Ben & Nelson, Trisalyn & Winters, Meghan, 2016. "Mapping ridership using crowdsourced cycling data," Journal of Transport Geography, Elsevier, vol. 52(C), pages 90-97.
    14. Pulugurtha, Srinivas S. & Mathew, Sonu, 2021. "Modeling AADT on local functionally classified roads using land use, road density, and nearest nonlocal road data," Journal of Transport Geography, Elsevier, vol. 93(C).
    15. Kepaptsoglou, Konstantinos & Stathopoulos, Antony & Karlaftis, Matthew G., 2017. "Ridership estimation of a new LRT system: Direct demand model approach," Journal of Transport Geography, Elsevier, vol. 58(C), pages 146-156.
    16. Thi Mai Chi Nguyen & Hironori Kato & Le Binh Phan, 2020. "Is Built Environment Associated with Travel Mode Choice in Developing Cities? Evidence from Hanoi," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    17. Lucas, Karen & Philips, Ian & Mulley, Corinne & Ma, Liang, 2018. "Is transport poverty socially or environmentally driven? Comparing the travel behaviours of two low-income populations living in central and peripheral locations in the same city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 622-634.
    18. Mário Meireles & Paulo J. G. Ribeiro, 2020. "Digital Platform/Mobile App to Boost Cycling for the Promotion of Sustainable Mobility in Mid-Sized Starter Cycling Cities," Sustainability, MDPI, vol. 12(5), pages 1-27, March.
    19. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    20. Roy, Avipsa & Fuller, Daniel & Nelson, Trisalyn & Kedron, Peter, 2022. "Assessing the role of geographic context in transportation mode detection from GPS data," Journal of Transport Geography, Elsevier, vol. 100(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:88:y:2020:i:c:s096669232030942x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.