IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2610-d757134.html
   My bibliography  Save this article

Spatiotemporal Variation in Gross Primary Productivity and Their Responses to Climate in the Great Lakes Region of Sub-Saharan Africa during 2001–2020

Author

Listed:
  • Alphonse Kayiranga

    (State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Baozhang Chen

    (State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
    Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China)

  • Fei Wang

    (State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Winny Nthangeni

    (Faculty of Sustainable Urban Planning and Development, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa)

  • Adil Dilawar

    (State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yves Hategekimana

    (University of Chinese Academy of Sciences, Beijing 100049, China
    Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    Rwanda Space Agency, Telecom House Kacyiru, Kigali P.O. Box 6205, Rwanda)

  • Huifang Zhang

    (State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lifeng Guo

    (Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China)

Abstract

The impacts of climate on spatiotemporal variations of eco-physiological and bio-physical factors have been widely explored in previous research, especially in dry areas. However, the understanding of gross primary productivity (GPP) variations and its interactions with climate in humid and semi-humid areas remains unclear. Based on hyperspectral satellite remotely sensed vegetation phenology processes and related indices and the re-analysed climate datasets, we investigated the seasonal and inter-annual variability of GPP by using different light-use efficiency (LUE) models including the Carnegie-Ames-Stanford Approaches (CASA) model, vegetation photosynthesis models (VPMChl and VPMCanopy) and Moderate Resolution Imaging Spectroradiometer (MODIS) GPP products (MOD17A2H) during 2001–2020 over the Great Lakes region of Sub-Saharan Africa (GLR-SSA). The models’ validation against the in situ GPP-based upscaled observations (GPP-EC) indicated that these three models can explain 82%, 79% and 80% of GPP variations with root mean square error (RMSE) values of 5.7, 8.82 and 10.12 g C·m −2 ·yr −1 , respectively. The spatiotemporal variations of GPP showed that the GLR-SSA experienced: (i) high GPP values during December-May; (ii) high annual GPP increase during 2002–2003, 2011–2013 and 2015–2016 and annual decreasing with a marked alternation in other years; (iii) evergreen broadleaf forests having the highest GPP values while grasslands and croplands showing lower GPP values. The spatial correlation between GPP and climate factors indicated 60% relative correlation between precipitation and GPP and 65% correction between surface air temperature and GPP. The results also showed high GPP values under wet conditions (in rainy seasons and humid areas) that significantly fell by the rise of dry conditions (in long dry season and arid areas). Therefore, these results showed that climate factors have potential impact on GPP variability in this region. However, these findings may provide a better understanding of climate implications on GPP variability in the GLR-SSA and other tropical climate zones.

Suggested Citation

  • Alphonse Kayiranga & Baozhang Chen & Fei Wang & Winny Nthangeni & Adil Dilawar & Yves Hategekimana & Huifang Zhang & Lifeng Guo, 2022. "Spatiotemporal Variation in Gross Primary Productivity and Their Responses to Climate in the Great Lakes Region of Sub-Saharan Africa during 2001–2020," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2610-:d:757134
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2610/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pötscher, Benedikt M. & Preinerstorfer, David, 2018. "Controlling the size of autocorrelation robust tests," Journal of Econometrics, Elsevier, vol. 207(2), pages 406-431.
    2. Sannigrahi, Srikanta, 2017. "Modeling terrestrial ecosystem productivity of an estuarine ecosystem in the Sundarban Biosphere Region, India using seven ecosystem models," Ecological Modelling, Elsevier, vol. 356(C), pages 73-90.
    3. Cai, Junmeng & Wu, Weixuan & Liu, Ronghou, 2014. "An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 236-246.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    2. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 107420, University Library of Munich, Germany.
    3. Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
    4. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    5. Pötscher, Benedikt M. & Preinerstorfer, David, 2023. "How Reliable Are Bootstrap-Based Heteroskedasticity Robust Tests?," Econometric Theory, Cambridge University Press, vol. 39(4), pages 789-847, August.
    6. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    7. Pötscher, Benedikt M. & Preinerstorfer, David, 2017. "Further Results on Size and Power of Heteroskedasticity and Autocorrelation Robust Tests, with an Application to Trend Testing," MPRA Paper 81053, University Library of Munich, Germany.
    8. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
    9. Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
    10. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    11. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.
    12. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.
    13. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    14. Fan, Honggang & Gu, Jing & Wang, Yazhuo & Yuan, Haoran & Chen, Yong, 2022. "Insight into the pyrolysis kinetics of cellulose, xylan and lignin with the addition of potassium and calcium based on distributed activation energy model," Energy, Elsevier, vol. 243(C).
    15. Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
    16. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Sobek, Szymon & Werle, Sebastian, 2019. "Solar pyrolysis of waste biomass: Part 1 reactor design," Renewable Energy, Elsevier, vol. 143(C), pages 1939-1948.
    18. Sun, Yixiao & Yang, Jingjing, 2020. "Testing-optimal kernel choice in HAR inference," Journal of Econometrics, Elsevier, vol. 219(1), pages 123-136.
    19. Wang, Haoyu & Han, Xue & Zeng, Yimin & Xu, Chunbao Charles, 2023. "Development of a global kinetic model based on chemical compositions of lignocellulosic biomass for predicting product yields from hydrothermal liquefaction," Renewable Energy, Elsevier, vol. 215(C).
    20. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2610-:d:757134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.