IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123014489.html
   My bibliography  Save this article

Co-pyrolysis of bamboo biomass with polypropylene coverall: Distributed activation energy modeling and pyrolysate composition studies

Author

Listed:
  • Chakraborty, Sourabh
  • Mohanty, Kaustubha
  • Vinu, Ravikrishnan

Abstract

This study evaluates the pyrolysis kinetics and resource recovery potential from mixtures of bamboo sawdust (BS) biomass, and a COVID-19 waste material, body coverall (BC). The pyrolysis kinetics of BS, BC and their binary mixtures was modeled using distributed activation energy modeling approach. BS pyrolysis was described using three pseudocomponents, viz., cellulose, hemicellulose and lignin, and BC using two pseudocomponents, polypropylene and an additive. For pyrolysis of individual BS and BC, the activation energy was highest for lignin (272.1 kJ mol−1) and the additive (321.7 kJ mol−1) pseudocomponent. The activation energy (240.7 kJ mol−1) and change in enthalpy (234.9 kJ mol−1) were found to be the lowest for lignin for the blend BS:BC (3:1 wt/wt). Analytical pyrolysis revealed alkenes (63.3%) and oxygen containing aromatics (57.4%) as the major compounds from BC and BS, respectively. Cyclic alcohols were the major compounds from pyrolysis of BS–BC mixtures. This study demonstrates that blending BC with BS lowers the energy barrier for pyrolysis to generate valuable chemicals.

Suggested Citation

  • Chakraborty, Sourabh & Mohanty, Kaustubha & Vinu, Ravikrishnan, 2024. "Co-pyrolysis of bamboo biomass with polypropylene coverall: Distributed activation energy modeling and pyrolysate composition studies," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014489
    DOI: 10.1016/j.renene.2023.119533
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119533?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liew, Jia Xin & Loy, Adrian Chun Minh & Chin, Bridgid Lai Fui & AlNouss, Ahmed & Shahbaz, Muhammad & Al-Ansari, Tareq & Govindan, Rajesh & Chai, Yee Ho, 2021. "Synergistic effects of catalytic co-pyrolysis of corn cob and HDPE waste mixtures using weight average global process model," Renewable Energy, Elsevier, vol. 170(C), pages 948-963.
    2. Fan, Yongsheng & Lu, Dongsheng & Wang, Jiawei & Kawamoto, Haruo, 2022. "Thermochemical behaviors, kinetics and bio-oils investigation during co-pyrolysis of biomass components and polyethylene based on simplex-lattice mixture design," Energy, Elsevier, vol. 239(PC).
    3. Sun, Jiaman & Luo, Juan & Lin, Junhao & Ma, Rui & Sun, Shichang & Fang, Lin & Li, Haowen, 2022. "Study of co-pyrolysis endpoint and product conversion of plastic and biomass using microwave thermogravimetric technology," Energy, Elsevier, vol. 247(C).
    4. Abbas-Abadi, Mehrdad Seifali & Van Geem, Kevin M. & Fathi, Maryam & Bazgir, Hossein & Ghadiri, Mohammad, 2021. "The pyrolysis of oak with polyethylene, polypropylene and polystyrene using fixed bed and stirred reactors and TGA instrument," Energy, Elsevier, vol. 232(C).
    5. Cai, Junmeng & Wu, Weixuan & Liu, Ronghou, 2014. "An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 236-246.
    6. Alam, Mahboob & Rammohan, Draksharapu & Peela, Nageswara Rao, 2021. "Catalytic co-pyrolysis of wet-torrefied bamboo sawdust and plastic over the zeolite H-ZSM-5: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 178(C), pages 608-619.
    7. Chakraborty, Sourabh & Dunford, Nurhan Turgut & Goad, Carla, 2021. "A kinetic study of microalgae, municipal sludge and cedar wood co-pyrolysis," Renewable Energy, Elsevier, vol. 165(P1), pages 514-524.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yongsheng & Qin, Changsheng & Zhao, Keyu & Xiong, Yonglian & Shi, Yunxi, 2025. "Conversion of lignin with polystyrene into high-value aromatics through co-pyrolysis and post-plasma refining," Energy, Elsevier, vol. 318(C).
    2. Ajorloo, Mojtaba & Ghodrat, Maryam & Scott, Jason & Strezov, Vladimir, 2024. "Experimental analysis of the effects of feedstock composition on the plastic and biomass Co-gasification process," Renewable Energy, Elsevier, vol. 231(C).
    3. Ajorloo, Mojtaba & Ghodrat, Maryam & Scott, Jason & Strezov, Vladimir, 2025. "Modeling and experimental validation of the Co-gasification of plastic and biomass waste to estimate product yields," Energy, Elsevier, vol. 317(C).
    4. Ajorloo, Mojtaba & Ghodrat, Maryam & Scott, Jason & Strezov, Vladimir & Zhuo, Yuting & Shen, Yansong, 2024. "Exploring the feasibility of Co-gasification of biomass and EVA from End-of-Life solar panels," Energy, Elsevier, vol. 313(C).
    5. Rammohan, Draksharapu & Kishore, Nanda & Uppaluri, Ramagopal V.S., 2022. "Pyro–catalytic co–pyrolysis of Delonix regia and butyl rubber tube: Kinetic modelling and thermodynamic insights," Renewable Energy, Elsevier, vol. 201(P1), pages 194-203.
    6. Bassyouni, Mohamed & Nasser, Reem & El-Bagoury, Moataz & Shaker, Islam & Attia, Attia M. & Elhenawy, Yasser & Aboelela, Dina, 2025. "Integrating medical plastic waste pyrolysis and circular economy for environmental sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    7. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    8. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    9. Berthold, Engamba Esso Samy & Deng, Wei & Zhou, Junbo & Bertrand, Aguenkeu Mefinnya Elie & Xu, Jun & Jiang, Long & Su, Sheng & Hu, Song & Hu, Xun & Wang, Yi & Xiang, Jun, 2023. "Impact of plastic type on synergistic effects during co-pyrolysis of rice husk and plastics," Energy, Elsevier, vol. 281(C).
    10. Wang, Jiong & Mingshen, Jiang & Zhang, Pin & Liu, Qunsheng & Zhang, Shuqing & Wang, Ke & Li, Chong & Cai, Junmeng, 2024. "Elucidating kinetic mechanisms of lignin and biomass pyrolysis by distributed activation energy model with genetic algorithm," Energy, Elsevier, vol. 312(C).
    11. Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
    12. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Yang, Yantao & Jiang, Mingshen & Song, Lei & Shen, Yilin & Lei, Tingzhou & Cai, Junmeng, 2024. "Systematical analysis and application of distributed activation energy model (DAEM) with Weibull distribution for pyrolysis kinetics of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 237(PA).
    14. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    15. Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts," Renewable Energy, Elsevier, vol. 227(C).
    16. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
    17. Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
    18. Alphonse Kayiranga & Baozhang Chen & Fei Wang & Winny Nthangeni & Adil Dilawar & Yves Hategekimana & Huifang Zhang & Lifeng Guo, 2022. "Spatiotemporal Variation in Gross Primary Productivity and Their Responses to Climate in the Great Lakes Region of Sub-Saharan Africa during 2001–2020," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    19. Chen, Yasen & Wu, Xingguo & Chen, Hai & Chen, Wei & Hu, Junhao & Chang, Chun & Pang, Shusheng & Li, Pan, 2024. "Production of MAH-rich bio-oil from co-pyrolysis of biomass and plastics using carbonized MOF catalysts under microwave irradiation," Energy, Elsevier, vol. 313(C).
    20. Gong, Junhui & Zhang, Mingrui, 2022. "Pyrolysis and autoignition behaviors of oriented strand board under power-law radiation," Renewable Energy, Elsevier, vol. 182(C), pages 946-957.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.