IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p627-d719188.html
   My bibliography  Save this article

Designing and Energy Estimation of Photovoltaic Energy Generation System and Prediction of Plant Performance with the Variation of Tilt Angle and Interrow Spacing

Author

Listed:
  • Muhammad Tamoor

    (Department of Electrical Engineering and Technology, Government College University Faisalabad, Faisalabad 38000, Pakistan)

  • Salman Habib

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
    Department of Electrical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Abdul Rauf Bhatti

    (Department of Electrical Engineering and Technology, Government College University Faisalabad, Faisalabad 38000, Pakistan)

  • Arslan Dawood Butt

    (Department of Electrical Engineering and Technology, Government College University Faisalabad, Faisalabad 38000, Pakistan)

  • Ahmed Bilal Awan

    (Department of Electrical and Computer Engineering, College of Engineering and Information Technology, Ajman University, Ajman P.O. Box 346, United Arab Emirates)

  • Emad M. Ahmed

    (Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
    Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

Abstract

The focus of this research is to design a ground-mounted photovoltaic system at optimal tilt angle and interrow space to meet high demand of electrical energy. The Department of Electrical Engineering and Technology, GC University Faisalabad has been considered to perform the simulation test. This study is conducted using Meteonorm software for solar resource assessment. Furthermore, HelioScope software is used for modeling of a ground-mounted photovoltaic system, study of PV system’s performance in terms of annual generation, system losses and performance ratio and analysis of photovoltaic module’s performance, current-voltage and power-voltage curves for different irradiance levels. From SLD, it is seen that 11 strings are connected to each inverter and inverters output power are combined by using 20.0 A circuit interconnects. The performance of photovoltaic systems is impacted by tilt angle and interrow spacing. From simulation results of all cases, it is concluded that the PV system installed at 15° tilt angle with 4 feet interrow spacing are more efficient than the other installed PV systems, because total collector irradiance is maximum (1725.0 kWh/m 2 ) as compared to other tilt angles. At 15° tilt angle, the annual production of photovoltaic system is 2.265 GWh and performance ratio of PV system is 82.0%. It is envisioned that this work will provide the guidance to energy system designers, planners and investors to formulate strategies for the installation of photovoltaic energy systems in Pakistan and all over the world.

Suggested Citation

  • Muhammad Tamoor & Salman Habib & Abdul Rauf Bhatti & Arslan Dawood Butt & Ahmed Bilal Awan & Emad M. Ahmed, 2022. "Designing and Energy Estimation of Photovoltaic Energy Generation System and Prediction of Plant Performance with the Variation of Tilt Angle and Interrow Spacing," Sustainability, MDPI, vol. 14(2), pages 1-27, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:627-:d:719188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muneer, Tariq & Asif, Muhammad & Munawwar, Saima, 2005. "Sustainable production of solar electricity with particular reference to the Indian economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 444-473, October.
    2. Farooqui, Suhail Zaki, 2014. "Prospects of renewables penetration in the energy mix of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 693-700.
    3. Rashiqa Abdul Salam & Khuram Pervez Amber & Naeem Iqbal Ratyal & Mehboob Alam & Naveed Akram & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2020. "An Overview on Energy and Development of Energy Integration in Major South Asian Countries: The Building Sector," Energies, MDPI, vol. 13(21), pages 1-37, November.
    4. Mubashir Qasim & Koji Kotani, 2014. "An empirical analysis of energy shortage in Pakistan," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 21(1), pages 137-166, June.
    5. Muneer, T. & Asif, M., 2007. "Prospects for secure and sustainable electricity supply for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 654-671, May.
    6. Sher, Hadeed Ahmed & Murtaza, Ali F & Addoweesh, Khaled E & Chiaberge, Marcello, 2015. "Pakistan’s progress in solar PV based energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 213-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ganapathy Ramesh & Jaganathan Logeshwaran & Thangavel Kiruthiga & Jaime Lloret, 2023. "Prediction of Energy Production Level in Large PV Plants through AUTO-Encoder Based Neural-Network (AUTO-NN) with Restricted Boltzmann Feature Extraction," Future Internet, MDPI, vol. 15(2), pages 1-20, January.
    2. Sajjad Miran & Muhammad Tamoor & Tayybah Kiren & Faakhar Raza & Muhammad Imtiaz Hussain & Jun-Tae Kim, 2022. "Optimization of Standalone Photovoltaic Drip Irrigation System: A Simulation Study," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    3. Faakhar Raza & Muhammad Tamoor & Sajjad Miran & Waseem Arif & Tayybah Kiren & Waseem Amjad & Muhammad Imtiaz Hussain & Gwi-Hyun Lee, 2022. "The Socio-Economic Impact of Using Photovoltaic (PV) Energy for High-Efficiency Irrigation Systems: A Case Study," Energies, MDPI, vol. 15(3), pages 1-21, February.
    4. Xiaofei Li & Zhao Wang & Yinnan Liu & Haifeng Wang & Liusheng Pei & An Wu & Shuang Sun & Yongjun Lian & Honglu Zhu, 2023. "A Novel Operating State Evaluation Method for Photovoltaic Strings Based on TOPSIS and Its Application," Sustainability, MDPI, vol. 15(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahir, Z.R. & Asim, Muhammad, 2018. "Surface measured solar radiation data and solar energy resource assessment of Pakistan: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2839-2861.
    2. Sophia Akhtar & M Khurram Hashmi & Ishaq Ahmad & Rizwan Raza, 2018. "Advances and significance of solar reflectors in solar energy technology in Pakistan," Energy & Environment, , vol. 29(4), pages 435-455, June.
    3. Sadiqa, Ayesha & Gulagi, Ashish & Breyer, Christian, 2018. "Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050," Energy, Elsevier, vol. 147(C), pages 518-533.
    4. Safder, Usman & Hai, Tra Nguyen & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Nationwide policymaking strategies to prevent future electricity crises in developing countries using data-driven forecasting and fuzzy-SWOT analyses," Energy, Elsevier, vol. 259(C).
    5. Mengyao Han & Jun Tang & Abdul Karim Lashari & Khizar Abbas & Hui Liu & Weidong Liu, 2022. "Unveiling China’s Overseas Photovoltaic Power Stations in Pakistan under Low-Carbon Transition," Land, MDPI, vol. 11(10), pages 1-14, October.
    6. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    7. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    8. Ahmed, Saeed & Mahmood, Anzar & Hasan, Ahmad & Sidhu, Guftaar Ahmad Sardar & Butt, Muhammad Fasih Uddin, 2016. "A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 216-225.
    9. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    10. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    11. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    12. Varun & Prakash, Ravi & Bhat, I.K., 2010. "A figure of merit for evaluating sustainability of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1640-1643, August.
    13. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    14. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    15. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    16. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    17. Stambouli, Amine Boudghene, 2011. "Promotion of renewable energies in Algeria: Strategies and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1169-1181, February.
    18. Asif, M., 2009. "Sustainable energy options for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 903-909, May.
    19. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    20. Leezna Saleem & Imran Ahmad Siddiqui & Intikhab Ulfat, 2021. "The prioritization of renewable energy technologies in Pakistan: An urgent need," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2021(1), pages 81-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:627-:d:719188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.