IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16979-d1007173.html
   My bibliography  Save this article

Coordinated Distribution or Client Introduce? Analysis of Energy Conservation and Emission Reduction in Canadian Logistics Enterprises

Author

Listed:
  • Yuntao Bai

    (School of Business, Shandong Management University, Jinan 250357, China)

  • Yuan Gao

    (School of Business, Shandong Management University, Jinan 250357, China)

  • Delong Li

    (School of Business Administration, Inner Mongolia University of Finance and Economics, Hohhot 010070, China)

  • Dehai Liu

    (School of Public Administration, Dongbei University of Finance and Economics, Dalian 116025, China)

Abstract

Due to the large area and small population of Canada, the efficiency of logistics enterprises is low, and each logistics enterprise needs to cooperate to save energy and reduce emissions. Considering that each logistics enterprise can realize the maximization of its own benefit by controlling the distribution volume and the input of facilities. In this article, the differential game model of individual distribution, coordinated distribution and paid introduction of customers for each logistics enterprise is constructed, the balanced distribution volume, capital input and social welfare functions of each logistics enterprise under the three modes are obtained, and the applicable conditions of various distribution cooperation channels are compared. The research results show that if the organizational cost between logistics enterprises is greater than the communication cost, the benefits of large-scale logistics enterprises under the introduction customer mode are greater than those under the collaborative distribution mode. However, only the communication cost and organizational cost are relatively small, and the profit of small-scale logistics enterprises under the introduction of the customer mode is smaller than that under the collaborative distribution mode.

Suggested Citation

  • Yuntao Bai & Yuan Gao & Delong Li & Dehai Liu, 2022. "Coordinated Distribution or Client Introduce? Analysis of Energy Conservation and Emission Reduction in Canadian Logistics Enterprises," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16979-:d:1007173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Bernasconi & Sara Galetti & Valeria Gattai & Piergiovanna Natale, 2022. "Contract Incompleteness and the Boundaries of the Firm in Times of COVID-19," Journal of Industry, Competition and Trade, Springer, vol. 22(3), pages 371-409, December.
    2. Adua, Lazarus, 2022. "Super polluters and carbon emissions: Spotlighting how higher-income and wealthier households disproportionately despoil our atmospheric commons," Energy Policy, Elsevier, vol. 162(C).
    3. Ziqi Wang & Peihan Wen, 2020. "Optimization of a Low-Carbon Two-Echelon Heterogeneous-Fleet Vehicle Routing for Cold Chain Logistics under Mixed Time Window," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    4. Michael K. Lim & Ho-Yin Mak & Ying Rong, 2015. "Toward Mass Adoption of Electric Vehicles: Impact of the Range and Resale Anxieties," Manufacturing & Service Operations Management, INFORMS, vol. 17(1), pages 101-119, February.
    5. Changyou Zhang & Wenyu Zhang & Weina Luo & Xue Gao & Bingchen Zhang, 2021. "Analysis of Influencing Factors of Carbon Emissions in China’s Logistics Industry: A GDIM-Based Indicator Decomposition," Energies, MDPI, vol. 14(18), pages 1-23, September.
    6. Brülisauer, Marcel & Goette, Lorenz & Jiang, Zhengyi & Schmitz, Jan & Schubert, Renate, 2020. "Appliance-specific feedback and social comparisons: Evidence from a field experiment on energy conservation," Energy Policy, Elsevier, vol. 145(C).
    7. Qian Yu & Yuanguo Wang & Xiaogang Jiang & Bailu Zhao & Xiuling Zhang & Xiaobei Wang & Qingqing Liu, 2021. "Optimization of Vehicle Transportation Route Based on IoT," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, September.
    8. Yuntao Bai & Qiang Wang & Yueling Yang, 2022. "From Pollution Control Cooperation of Lancang-Mekong River to “Two Mountains Theory”," Sustainability, MDPI, vol. 14(4), pages 1-24, February.
    9. Shufan Zhu & Kefan Xie & Ping Gui, 2021. "Dynamic Adjustment Mechanism and Differential Game Model Construction of Mask Emergency Supply Chain Cooperation Based on COVID-19 Outbreak," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    10. Michael Naor & Alex Coman & Anat Wiznizer, 2021. "Vertically Integrated Supply Chain of Batteries, Electric Vehicles, and Charging Infrastructure: A Review of Three Milestone Projects from Theory of Constraints Perspective," Sustainability, MDPI, vol. 13(7), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becker, Jörg & Distel, Bettina & Grundmann, Matthias & Hupperich, Thomas & Kersting, Norbert & Löschel, Andreas & Parreira do Amaral, Marcelo & Scholta, Hendrik, 2021. "Challenges and potentials of digitalisation for small and mid-sized towns: Proposition of a transdisciplinary research agenda," ERCIS Working Papers 36, University of Münster, European Research Center for Information Systems (ERCIS).
    2. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    3. Rafidah Md Noor & Nadia Bella Gustiani Rasyidi & Tarak Nandy & Raenu Kolandaisamy, 2020. "Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case Study," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    4. Chun Yang & Jui-Che Tu & Qianling Jiang, 2020. "The Influential Factors of Consumers’ Sustainable Consumption: A Case on Electric Vehicles in China," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    5. Demir, Sercan & Aktas, Ersin & Paksoy, Turan, 2021. "Cold chain logistics: The case of Turkish Airlines vaccine distribution," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 771-798, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    6. Guo, Qiaozhen & He, Qiao-Chu & Chen, Ying-Ju & Huang, Wei, 2021. "Poverty mitigation via solar panel adoption: Smart contracts and targeted subsidy design," Omega, Elsevier, vol. 102(C).
    7. Shihui Tian & Guowei Hua & T. C. E. Cheng, 2019. "Optimal Deployment of Charging Piles for Electric Vehicles Under the Indirect Network Effects," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-17, February.
    8. Liangui Peng & Ying Li & Hui Yu, 2021. "Effects of Dual Credit Policy and Consumer Preferences on Production Decisions in Automobile Supply Chain," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    9. Haibo Chen & Zongjun Wang & Xuesong Yu, 2021. "Sustainability Strategies of Equipment Introduction and Overcapacity Risk Sharing in Mask Emergency Supply Chains during Pandemics," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    10. Wei Fan & Xi Luo & Jiabei Yu & Yiyang Dai, 2021. "An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model," Energies, MDPI, vol. 14(22), pages 1-17, November.
    11. Vishal V. Agrawal & Ioannis Bellos, 2017. "The Potential of Servicizing as a Green Business Model," Management Science, INFORMS, vol. 63(5), pages 1545-1562, May.
    12. Chen, Chien-fei & Xu, Xiaojing & Adua, Lazarus & Briggs, Morgan & Nelson, Hannah, 2022. "Exploring the factors that influence energy use intensity across low-, middle-, and high-income households in the United States," Energy Policy, Elsevier, vol. 168(C).
    13. Federica Cappelli, 2024. "Unequal contributions to CO2 emissions along the income distribution within and between countries," Working Papers 2024.06, Fondazione Eni Enrico Mattei.
    14. Long He & Sheng Liu & Zuo‐Jun Max Shen, 2022. "Smart urban transport and logistics: A business analytics perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3771-3787, October.
    15. Abdul Salam Khan & Bashir Salah & Dominik Zimon & Muhammad Ikram & Razaullah Khan & Catalin I. Pruncu, 2020. "A Sustainable Distribution Design for Multi-Quality Multiple-Cold-Chain Products: An Integrated Inspection Strategies Approach," Energies, MDPI, vol. 13(24), pages 1-25, December.
    16. Srivastava, Abhishek & Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mateen, Arqum & Narayanamurthy, Gopalakrishnan, 2022. "Design and selection of government policies for electric vehicles adoption: A global perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    17. Bansal, Prateek & Kumar, Rajeev Ranjan & Raj, Alok & Dubey, Subodh & Graham, Daniel J., 2021. "Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles," Energy Economics, Elsevier, vol. 100(C).
    18. Wei Zhou & Haixia Wang & Victor Shi & Xiding Chen, 2022. "A Decision Model for Free-Floating Car-Sharing Providers for Sustainable and Resilient Supply Chains," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    19. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    20. Yanming Sun & Shixian Liu & Lei Li, 2022. "Grey Correlation Analysis of Transportation Carbon Emissions under the Background of Carbon Peak and Carbon Neutrality," Energies, MDPI, vol. 15(9), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16979-:d:1007173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.