IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0300833.html
   My bibliography  Save this article

Analysis on the control of the black tiger shrimp in the America from the perspective of international cooperation

Author

Listed:
  • Yuntao Bai
  • Ruidi Hu
  • Lan Wang
  • Delong Li

Abstract

The invasive black tiger shrimp has caused serious ecological problems in the America. However, since it can be directly eaten or made into feed, it may be beneficial to other countries. In order to ensure ecological security, it is necessary to control the invasion of the black tiger shrimp through international cooperation. Common control modes of the black tiger shrimp include the introducing natural enemy mode, making feed mode and the "bringing to the table" mode. In order to derive the applicable scope of various control modes of the black tiger shrimp and provide suggestions for the security and sustainability of the ecological supply chain of the America and cooperative country, this article constructs three differential game models and compares and analyzes the equilibrium results obtained by the models. Finally, the study shows that the higher the price of feed and the price of black tiger shrimp, the greater the degree of control of the black tiger shrimp. If the price of the black tiger shrimp and the reputation of the America for controlling the black tiger shrimp are lower, the America can gain more benefits under the feed production mode. Otherwise, the America prefers to sell the black tiger shrimp directly, thus directly "bringing to the table". Compared with the feed production or "bringing to the table" mode, cooperative country prefer to control the black tiger shrimp flooding through the natural enemy introduction mode.

Suggested Citation

  • Yuntao Bai & Ruidi Hu & Lan Wang & Delong Li, 2024. "Analysis on the control of the black tiger shrimp in the America from the perspective of international cooperation," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-31, May.
  • Handle: RePEc:plo:pone00:0300833
    DOI: 10.1371/journal.pone.0300833
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300833
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300833&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0300833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cordeiro, M.R.C. & Mengistu, G.F. & Pogue, S.J. & Legesse, G. & Gunte, K.E. & Taylor, A.M. & Ominski, K.H. & Beauchemin, K.A. & McGeough, E.J. & Faramarzi, M. & McAllister, T.A., 2022. "Assessing feed security for beef production within livestock-intensive regions," Agricultural Systems, Elsevier, vol. 196(C).
    2. Friederike Ziegler & Ulf Winther & Erik Skontorp Hognes & Andreas Emanuelsson & Veronica Sund & Harald Ellingsen, 2013. "The Carbon Footprint of Norwegian Seafood Products on the Global Seafood Market," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 103-116, February.
    3. Yuntao Bai & Yuan Gao & Delong Li & Dehai Liu, 2022. "Coordinated Distribution or Client Introduce? Analysis of Energy Conservation and Emission Reduction in Canadian Logistics Enterprises," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    4. Xuewen Tan & Wenjie Qin & Guangyao Tang & Changcheng Xiang & Xinzhi Liu, 2019. "Models to Assess the Effects of Nonsmooth Control and Stochastic Perturbation on Pest Control: A Pest-Natural-Enemy Ecosystem," Complexity, Hindawi, vol. 2019, pages 1-14, April.
    5. Wentao Zhang & Nelson A. Uhan & Maged Dessouky & Alejandro Toriello, 2022. "Acyclic Mechanism Design for Freight Consolidation," Transportation Science, INFORMS, vol. 56(3), pages 571-584, May.
    6. Shufan Zhu & Kefan Xie & Ping Gui, 2021. "Dynamic Adjustment Mechanism and Differential Game Model Construction of Mask Emergency Supply Chain Cooperation Based on COVID-19 Outbreak," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    7. B. Viscolani & G. Zaccour, 2009. "Advertising Strategies in a Differential Game with Negative Competitor’s Interference," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 153-170, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teea Kortetmäki & Markku Oksanen, 2021. "Is there a convincing case for climate veganism?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(3), pages 729-740, September.
    2. Jesse Sherry & Jennifer Koester, 2020. "Life Cycle Assessment of Aquaculture Stewardship Council Certified Atlantic Salmon ( Salmo salar )," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    3. Vázquez-Rowe, Ian & Villanueva-Rey, Pedro & Moreira, Mª Teresa & Feijoo, Gumersindo, 2013. "The role of consumer purchase and post-purchase decision-making in sustainable seafood consumption. A Spanish case study using carbon footprinting," Food Policy, Elsevier, vol. 41(C), pages 94-102.
    4. Yuntao Bai & Qiang Wang & Yueling Yang, 2022. "From Pollution Control Cooperation of Lancang-Mekong River to “Two Mountains Theory”," Sustainability, MDPI, vol. 14(4), pages 1-24, February.
    5. Haibo Chen & Zongjun Wang & Xuesong Yu, 2021. "Sustainability Strategies of Equipment Introduction and Overcapacity Risk Sharing in Mask Emergency Supply Chains during Pandemics," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    6. Yuntao Bai & Lan Wang & Shuang Xu, 2023. "Health improvement of the elderly in five Central Asian countries during COVID-19 based on difference game," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-22, December.
    7. Gaspard Philis & Friederike Ziegler & Lars Christian Gansel & Mona Dverdal Jansen & Erik Olav Gracey & Anne Stene, 2019. "Comparing Life Cycle Assessment (LCA) of Salmonid Aquaculture Production Systems: Status and Perspectives," Sustainability, MDPI, vol. 11(9), pages 1-27, April.
    8. Hervé Lanotte & Aurélie Ringeval-Deluze & Erick Pruchnicki, 2022. "The stabilising effects on GVCs of multi-annual supply contracts between leading and subordinate firms: The example of champagne [Les effets stabilisateurs sur la CGV des contrats pluriannuels d’ap," Post-Print hal-04021392, HAL.
    9. Gaspard Philis & Friederike Ziegler & Mona Dverdal Jansen & Lars Christian Gansel & Sara Hornborg & Grete Hansen Aas & Anne Stene, 2022. "Quantifying environmental impacts of cleaner fish used as sea lice treatments in salmon aquaculture with life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1992-2005, December.
    10. Murray, Alexander G & Moriarty, Meadhbh, 2021. "A simple modelling tool for assessing interaction with host and local infestation of sea lice from salmonid farms on wild salmonids based on processes operating at multiple scales in space and time," Ecological Modelling, Elsevier, vol. 443(C).
    11. Giovanni Codotto & Massimo Pizzol & Troels J. Hegland & Niels Madsen, 2024. "Model uncertainty versus variability in the life cycle assessment of commercial fisheries," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 160-172, February.
    12. McGarraghy, Seán & Olafsdottir, Gudrun & Kazakov, Rossen & Huber, Élise & Loveluck, William & Gudbrandsdottir, Ingunn Y. & Čechura, Lukáš & Esposito, Gianandrea & Samoggia, Antonella & Aubert, Pierre-, 2022. "Conceptual system dynamics and agent-based modelling simulation of interorganisational fairness in food value chains: Research agenda and case studies," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(2).
    13. Jianhua Chen & Ting Yin, 2023. "Transmission Mechanism of Post-COVID-19 Emergency Supply Chain Based on Complex Network: An Improved SIR Model," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    14. Chen, Xianwen & Alfnes , Frode & Rickertsen , Kyrre, 2015. "Labeling Farmed Seafood," Working Paper Series 10-2015, Norwegian University of Life Sciences, School of Economics and Business.
    15. Nishant Saravanan & Jessica Olivares-Aguila & Alejandro Vital-Soto, 2022. "Bibliometric and Text Analytics Approaches to Review COVID-19 Impacts on Supply Chains," Sustainability, MDPI, vol. 14(23), pages 1-33, November.
    16. Seán McGarraghy & Gudrun Olafsdottir & Rossen Kazakov & Élise Huber & William Loveluck & Ingunn Y. Gudbrandsdottir & Lukáš Čechura & Gianandrea Esposito & Antonella Samoggia & Pierre-Marie Aubert & Da, 2022. "Conceptual System Dynamics and Agent-Based Modelling Simulation of Interorganisational Fairness in Food Value Chains: Research Agenda and Case Studies," Agriculture, MDPI, vol. 12(2), pages 1-30, February.
    17. Antonio Cortés & Sara González‐García & Amaya Franco‐Uría & Maria Teresa Moreira & Gumersindo Feijoo, 2022. "Evaluation of the environmental sustainability of the inshore great scallop (Pecten maximus) fishery in Galicia," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1920-1933, December.
    18. Friederike Ziegler & Sepideh Jafarzadeh & Erik Skontorp Hognes & Ulf Winther, 2022. "Greenhouse gas emissions of Norwegian seafoods: From comprehensive to simplified assessment," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1908-1919, December.
    19. Standal, Dag & Annie Sønvisen, Signe, 2015. "Gear liberalization in the Northeast Arctic cod fisheries – Implications for sustainability, efficiency and legitimacy," Marine Policy, Elsevier, vol. 53(C), pages 141-148.
    20. Taifouris, Manuel & Martín, Mariano, 2023. "Towards energy security by promoting circular economy: A holistic approach," Applied Energy, Elsevier, vol. 333(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0300833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.