IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15984-d988989.html
   My bibliography  Save this article

Biostimulants as Innovative Tools to Boost Date Palm ( Phoenix dactylifera L.) Performance under Drought, Salinity, and Heavy Metal(Oid)s’ Stresses: A Concise Review

Author

Listed:
  • Fatima-Zahra Akensous

    (Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco
    Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco)

  • Mohamed Anli

    (Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco
    Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco)

  • Abdelilah Meddich

    (Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco
    Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco)

Abstract

Date palm ( Phoenix dactylifera L.) is constantly subjected to abiotic stresses. Hence, the application of biostimulants, such as the arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR), and organic amendments hold tremendous potential to significantly improve the growth and yield of date palm. The strengthening of biostimulants’ main common modes of action is exerted through five main functions: biostimulation (essentially), biofertilization, bioprotection, biological control, and the role of bio-effector. Moreover, synergistic and complementary effects manifest through biochemical and nutritional benefits, in addition to molecular modulation. In this regard, the present concise review focuses on highlighting the beneficial impact of AMF and PGPR, as well as the organic amendments, in boosting the health status and productivity of date palm plants subjected to abiotic stresses. Furthermore, mechanisms reinforcing date palm plants’ resilience to abiotic stresses, powered by biostimulants, are particularly emphasized. Based on this review, we could conclude that the overall findings corroborate the beneficial effects of AMF–PGPR and/or compost and manure application in terms of boosting date palm’s growth traits, development, yielding, as well as soil properties under extreme environmental factors, such as those of drought, salinity, and excessive heavy metal(oid)s. Thus, biostimulants can confer resilience to date palm plants against abiotic stresses.

Suggested Citation

  • Fatima-Zahra Akensous & Mohamed Anli & Abdelilah Meddich, 2022. "Biostimulants as Innovative Tools to Boost Date Palm ( Phoenix dactylifera L.) Performance under Drought, Salinity, and Heavy Metal(Oid)s’ Stresses: A Concise Review," Sustainability, MDPI, vol. 14(23), pages 1-30, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15984-:d:988989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhen, Jingbo & Lazarovitch, Naftali & Tripler, Effi, 2020. "Effects of fruit load intensity and irrigation level on fruit quality, water productivity and net profits of date palms," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Alikhani-Koupaei, Majid & Fatahi, Reza & Zamani, Zabihollah & Salimi, Saeedeh, 2018. "Effects of deficit irrigation on some physiological traits, production and fruit quality of ‘Mazafati’ date palm and the fruit wilting and dropping disorder," Agricultural Water Management, Elsevier, vol. 209(C), pages 219-227.
    3. Mishari A. Alnaim & Magdy S. Mohamed & Maged Mohammed & Muhammad Munir, 2022. "Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    4. Latifa Al Kharusi & Rashid Al Yahyai & Mahmoud W. Yaish, 2019. "Antioxidant Response to Salinity in Salt-Tolerant and Salt-Susceptible Cultivars of Date Palm," Agriculture, MDPI, vol. 9(1), pages 1-17, January.
    5. Mabhaudhi, T. & Mpandeli, S. & Nhamo, Luxon & Chimonyo, V. G. P. & Nhemachena, Charles & Senzanje, A. & Naidoo, D. & Modi, A. T., 2018. "Prospects for improving irrigated agriculture in Southern Africa: linking water, energy and food," Papers published in Journals (Open Access), International Water Management Institute, pages 10(12):1-16.
    6. Serret, Maria D. & Al-Dakheel, Abdullah J. & Yousfi, Salima & Fernáandez-Gallego, Jose A. & Elouafi, Ismahane A. & Araus, José L., 2020. "Vegetation indices derived from digital images and stable carbon and nitrogen isotope signatures as indicators of date palm performance under salinity," Agricultural Water Management, Elsevier, vol. 230(C).
    7. Al-Muaini, Ahmed & Green, Steve & Dakheel, Abdullah & Abdullah, Al-Hareth & Sallam, Osama & Abou Dahr, Wasel Abdelwahid & Dixon, Steve & Kemp, Peter & Clothier, Brent, 2019. "Water requirements for irrigation with saline groundwater of three date-palm cultivars with different salt-tolerances in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 222(C), pages 213-220.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Jingbo & Lazarovitch, Naftali & Tripler, Effi, 2020. "Effects of fruit load intensity and irrigation level on fruit quality, water productivity and net profits of date palms," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    3. Joel O. Botai & Christina M. Botai & Katlego P. Ncongwane & Sylvester Mpandeli & Luxon Nhamo & Muthoni Masinde & Abiodun M. Adeola & Michael G. Mengistu & Henerica Tazvinga & Miriam D. Murambadoro & S, 2021. "A Review of the Water–Energy–Food Nexus Research in Africa," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    4. Al-Dakheel, Abdullah J. & Hussain, M. Iftikhar & Abdulrahman, Abdulqader & Abdullah, AlHarith, 2022. "Long term assessment of salinity impact on fruit yield in eighteen date palm varieties," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Liu, Ziqiang & Zhang, Huan & Yu, Xinxiao & Jia, Guodong & Jiang, Jiang, 2021. "Evidence of foliar water uptake in a conifer species," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Tafadzwanashe Mabhaudhi & Luxon Nhamo & Sylvester Mpandeli & Charles Nhemachena & Aidan Senzanje & Nafisa Sobratee & Pauline Paidamoyo Chivenge & Rob Slotow & Dhesigen Naidoo & Stanley Liphadzi & Albe, 2019. "The Water–Energy–Food Nexus as a Tool to Transform Rural Livelihoods and Well-Being in Southern Africa," IJERPH, MDPI, vol. 16(16), pages 1-20, August.
    7. Tamimi, Mansoor Al & Green, Steve & Hammami, Zied & Ammar, Khalil & Ketbi, Mouza Al & Al-Shrouf, Ali M. & Dawoud, Mohamed & Kennedy, Lesley & Clothier, Brent, 2022. "Evapotranspiration and crop coefficients using lysimeter measurements for food crops in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Leontina Lipan & Aarón A. Carbonell-Pedro & Belén Cárceles Rodríguez & Víctor Hugo Durán-Zuazo & Dionisio Franco Tarifa & Iván Francisco García-Tejero & Baltasar Gálvez Ruiz & Simón Cuadros Tavira & R, 2021. "Can Sustained Deficit Irrigation Save Water and Meet the Quality Characteristics of Mango?," Agriculture, MDPI, vol. 11(5), pages 1-16, May.
    9. Nhamo, L. & Mpandeli, S. & Liphadzi, S. & Hlophe-Ginindza, S. & Kapari, M. & Molwantwa, J. & Mabhaudhi, Tafadzwanashe, 2023. "Advances in water research: enhancing sustainable water use in irrigated agriculture in South Africa," Book Chapters,, International Water Management Institute.
    10. Magidi, J. & van Koppen, Barbara & Nhamo, L. & Mpandeli, S. & Slotow, R. & Mabhaudhi, Tafadzwanashe, 2021. "Informing equitable water and food policies through accurate spatial information on irrigated areas in smallholder farming systems," Papers published in Journals (Open Access), International Water Management Institute, pages 1-13(24):36.
    11. Goldin, J. & Nhamo, L. & Ncube, B. & Zvimba, J. N. & Petja, B. & Mpandeli, S. & Nomquphu, W. & Hlophe-Ginindza, S. & Greeff-Laubscher, M. R. & Molose, V. & Lottering, S. & Liphadzi, S. & Naidoo, D. & , 2022. "Resilience and sustainability of the water sector during the COVID-19 pandemic," Papers published in Journals (Open Access), International Water Management Institute, pages 1-14(3):148.
    12. Mishari A. Alnaim & Magdy S. Mohamed & Maged Mohammed & Muhammad Munir, 2022. "Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    13. Lipan, Leontina & Martín-Palomo, María J. & Sánchez-Rodríguez, Lucía & Cano-Lamadrid, Marina & Sendra, Esther & Hernández, Francisca & Burló, Francisco & Vázquez-Araújo, Laura & Andreu, Luis & Carbone, 2019. "Almond fruit quality can be improved by means of deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 217(C), pages 236-242.
    14. Luxon Nhamo & Sylvester Mpandeli & Stanley Liphadzi & Tafadzwanashe Mabhaudhi, 2022. "Securing Land and Water for Food Production through Sustainable Land Reform: A Nexus Planning Perspective," Land, MDPI, vol. 11(7), pages 1-15, June.
    15. Sylvester Mpandeli & Luxon Nhamo & Sithabile Hlahla & Dhesigen Naidoo & Stanley Liphadzi & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2020. "Migration under Climate Change in Southern Africa: A Nexus Planning Perspective," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    16. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    17. Al-Muaini, Ahmed & Green, Steve & Abou Dahr, Wasel Abdelwahid & Kennedy, Lesley & Kemp, Peter & Dawoud, Mohamed & Clothier, Brent, 2019. "Water use and irrigation requirements for date palms on commercial farms in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    18. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    19. Matchaya, Greenwell & Nhamo, Luxon & Nhlengethwa, Sibusiso & Nhemachena, Charles, 2019. "An overview of water markets in southern Africa: an option for water management in times of scarcity," Papers published in Journals (Open Access), International Water Management Institute, pages 11(5):1-16..
    20. Hamdy Sayed Abdou Abdelaal & Dawn Thilmany, 2019. "Grains Production Prospects and Long Run Food Security in Egypt," Sustainability, MDPI, vol. 11(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15984-:d:988989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.