IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v230y2020ics0378377419304615.html
   My bibliography  Save this article

Vegetation indices derived from digital images and stable carbon and nitrogen isotope signatures as indicators of date palm performance under salinity

Author

Listed:
  • Serret, Maria D.
  • Al-Dakheel, Abdullah J.
  • Yousfi, Salima
  • Fernáandez-Gallego, Jose A.
  • Elouafi, Ismahane A.
  • Araus, José L.

Abstract

Date palm is frequently irrigated with brackish water. Developing tools to monitor salinity effects at the single-tree level may assist agronomy and phenotyping. Sixteen elite varieties were grown for 15 years under irrigation with three levels of saline water (5, 10 and 15 dS m−1) at the International Center for Biosaline Agriculture (UAE). Trunk length and diameter, number of branches, and fruit yield per tree were recorded. Different vegetation indices were calculated from single tree-top images taken from the ground with an RGB (Red/Green/Blue) camera. These included indices derived from CIE (Commission Internationale de l’Eclairage) color space models; lightness, together with a* and b* dimensions (CIELab) and u* and v* coordinates (CIELuv); and the HSI color space, referring to the components Hue, Saturation and Intensity. Moreover, Green Area (GA) and the Greener Area (GGA) were also formulated. Also canopy temperature (CT) was measured as an indicator of canopy water status with an infrared thermometer. The carbon isotope composition (δ13C), as a time-integrated indicator of water status, and the nitrogen isotope composition (δ15N) and total nitrogen concentration (N), as nitrogen metabolism indicators, were analyzed in leaflet dry matter. Irrigation conditions and genotypes exhibited significant effects for biomass, fruit yield and all the remote sensing and stable isotope traits evaluated. Hue correlated positively, whereas most of the other RGB vegetation indices along with δ13C and CT correlated negatively with biomass and fruit yield across salinities. Leaf N concentration and δ15N did not correlate with biomass and fruit yield across salinities, but were the only traits correlated with genotypic variability in fruit yield within a given salinity level. Traits that describe canopy color characteristics represent affordable tools for monitoring palm growth and productivity under saline irrigation. However, the results do not support the direct use of RGB indices to phenotype genotypic variability.

Suggested Citation

  • Serret, Maria D. & Al-Dakheel, Abdullah J. & Yousfi, Salima & Fernáandez-Gallego, Jose A. & Elouafi, Ismahane A. & Araus, José L., 2020. "Vegetation indices derived from digital images and stable carbon and nitrogen isotope signatures as indicators of date palm performance under salinity," Agricultural Water Management, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:agiwat:v:230:y:2020:i:c:s0378377419304615
    DOI: 10.1016/j.agwat.2019.105949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419304615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Muaini, Ahmed & Green, Steve & Dakheel, Abdullah & Abdullah, Al-Hareth & Abou Dahr, Wasel Abdelwahid & Dixon, Steve & Kemp, Peter & Clothier, Brent, 2019. "Irrigation management with saline groundwater of a date palm cultivar in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 211(C), pages 123-131.
    2. Tripler, Effi & Shani, Uri & Mualem, Yechezkel & Ben-Gal, Alon, 2011. "Long-term growth, water consumption and yield of date palm as a function of salinity," Agricultural Water Management, Elsevier, vol. 99(1), pages 128-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatima-Zahra Akensous & Mohamed Anli & Abdelilah Meddich, 2022. "Biostimulants as Innovative Tools to Boost Date Palm ( Phoenix dactylifera L.) Performance under Drought, Salinity, and Heavy Metal(Oid)s’ Stresses: A Concise Review," Sustainability, MDPI, vol. 14(23), pages 1-30, November.
    2. Zhen, Jingbo & Lazarovitch, Naftali & Tripler, Effi, 2020. "Effects of fruit load intensity and irrigation level on fruit quality, water productivity and net profits of date palms," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Liu, Ziqiang & Zhang, Huan & Yu, Xinxiao & Jia, Guodong & Jiang, Jiang, 2021. "Evidence of foliar water uptake in a conifer species," Agricultural Water Management, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Dakheel, Abdullah J. & Hussain, M. Iftikhar & Abdulrahman, Abdulqader & Abdullah, AlHarith, 2022. "Long term assessment of salinity impact on fruit yield in eighteen date palm varieties," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Zhen, Jingbo & Lazarovitch, Naftali & Tripler, Effi, 2020. "Effects of fruit load intensity and irrigation level on fruit quality, water productivity and net profits of date palms," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Al-Muaini, Ahmed & Green, Steve & Abou Dahr, Wasel Abdelwahid & Kennedy, Lesley & Kemp, Peter & Dawoud, Mohamed & Clothier, Brent, 2019. "Water use and irrigation requirements for date palms on commercial farms in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Al-Muaini, Ahmed & Green, Steve & Dakheel, Abdullah & Abdullah, Al-Hareth & Sallam, Osama & Abou Dahr, Wasel Abdelwahid & Dixon, Steve & Kemp, Peter & Clothier, Brent, 2019. "Water requirements for irrigation with saline groundwater of three date-palm cultivars with different salt-tolerances in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 222(C), pages 213-220.
    5. Tamimi, Mansoor Al & Green, Steve & Hammami, Zied & Ammar, Khalil & Ketbi, Mouza Al & Al-Shrouf, Ali M. & Dawoud, Mohamed & Kennedy, Lesley & Clothier, Brent, 2022. "Evapotranspiration and crop coefficients using lysimeter measurements for food crops in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Haj-Amor, Zied & Kumar Acharjee, Tapos & Dhaouadi, Latifa & Bouri, Salem, 2020. "Impacts of climate change on irrigation water requirement of date palms under future salinity trend in coastal aquifer of Tunisian oasis," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Meir, M. & Zaccai, M. & Raveh, E. & Ben-Asher, J. & Tel-Zur, N., 2014. "Performance of Ziziphus jujuba trees correlates with tissue mineral content under salinity conditions," Agricultural Water Management, Elsevier, vol. 142(C), pages 47-55.
    8. Giulia Marino & Daniele Zaccaria & Richard L. Snyder & Octavio Lagos & Bruce D. Lampinen & Louise Ferguson & Stephen R. Grattan & Cayle Little & Kristen Shapiro & Mahesh Lal Maskey & Dennis L. Corwin , 2019. "Actual Evapotranspiration and Tree Performance of Mature Micro-Irrigated Pistachio Orchards Grown on Saline-Sodic Soils in the San Joaquin Valley of California," Agriculture, MDPI, vol. 9(4), pages 1-21, April.
    9. Mishari A. Alnaim & Magdy S. Mohamed & Maged Mohammed & Muhammad Munir, 2022. "Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    10. Remston Martis & Amani Al-Othman & Muhammad Tawalbeh & Malek Alkasrawi, 2020. "Energy and Economic Analysis of Date Palm Biomass Feedstock for Biofuel Production in UAE: Pyrolysis, Gasification and Fermentation," Energies, MDPI, vol. 13(22), pages 1-34, November.
    11. Hu, Yanzhe & Kang, Shaozhong & Ding, Risheng & Zhao, Qing, 2021. "A crude protein and fiber model of alfalfa incorporating growth age under water and salt stress," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Tripler, Effi & Shani, Uri & Ben-Gal, Alon & Mualem, Yechezkel, 2012. "Apparent steady state conditions in high resolution weighing-drainage lysimeters containing date palms grown under different salinities," Agricultural Water Management, Elsevier, vol. 107(C), pages 66-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:230:y:2020:i:c:s0378377419304615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.