IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15106-d973058.html
   My bibliography  Save this article

Entropy-Maximization-Based Customer Order Allocation of Clothing Production Enterprises in the Sharing Economy

Author

Listed:
  • Feifeng Zheng

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)

  • Chunle Kang

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)

  • Qinrui Song

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)

  • Ming Liu

    (School of Economics and Management, Tongji University, Shanghai 200092, China)

Abstract

With the rapid development of the sharing economy, more and more platform operators apply the sharing concept in manufacturing, which increases the efficiency of assets utilization. Considering the apparel industry, clothing enterprises or manufacturers may share their excess orders between each other via a manufacturing cloud platform. Under the traditional production mode, manufacturers focus on processing their individual orders. There may be a coexistence of insufficient and surplus production capabilities. Some manufacturers cannot meet their customer demands due to limited capabilities and some orders have to be rejected, while some other manufacturers may have excess capacities with insufficient demands. It results in loss of revenue, and it is not conducive to maintaining a good customer relationship. In this paper, we consider a shared system with multiple manufacturers that produce homogeneous products, and the manufacturers in the shared system can share customer orders with each other. Once any manufacturer cannot fulfill all of its orders, the unsatisfied ones will be shared with other manufacturers that have surplus capacities with the aim of improving the balance of resource utilization and risk resistance of all manufacturers on the platform. The entropy maximization theory is mainly adopted to facilitate the formulation of the objective function. We apply a Taylor expansion to reformulate the objective function and construct a mixed-integer quadratic programming (MIQP) model. We employ off-the-shelf solvers to solve small-scale problems, and also propose a two-stage constructive heuristic algorithm to solve large-scale problems. Numerical experiments are conducted to demonstrate the efficiency of the algorithm.

Suggested Citation

  • Feifeng Zheng & Chunle Kang & Qinrui Song & Ming Liu, 2022. "Entropy-Maximization-Based Customer Order Allocation of Clothing Production Enterprises in the Sharing Economy," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15106-:d:973058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yadong Lu & S. C. Wong & Mengping Zhang & Chi-Wang Shu, 2009. "The Entropy Solutions for the Lighthill-Whitham-Richards Traffic Flow Model with a Discontinuous Flow-Density Relationship," Transportation Science, INFORMS, vol. 43(4), pages 511-530, November.
    2. Teye, Collins & Bell, Michael G.H. & Bliemer, Michiel C.J., 2017. "Entropy maximising facility location model for port city intermodal terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 1-16.
    3. Mafakheri, Fereshteh & Breton, Michele & Ghoniem, Ahmed, 2011. "Supplier selection-order allocation: A two-stage multiple criteria dynamic programming approach," International Journal of Production Economics, Elsevier, vol. 132(1), pages 52-57, July.
    4. Xie, Chi & Kockelman, Kara M. & Waller, S. Travis, 2011. "A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1465-1482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samar Abdalla & Joseph Amankwah-Amoah & Amgad Badewi, 2023. "Sharing-Economy Ecosystem: A Comprehensive Review and Future Research Directions," Sustainability, MDPI, vol. 15(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    2. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    3. Ghadimi, Pezhman & Ghassemi Toosi, Farshad & Heavey, Cathal, 2018. "A multi-agent systems approach for sustainable supplier selection and order allocation in a partnership supply chain," European Journal of Operational Research, Elsevier, vol. 269(1), pages 286-301.
    4. Rihab Khemiri & Khaoula Elbedoui-Maktouf & Bernard Grabot & Belhassen Zouari, 2017. "A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning," Post-Print hal-01758604, HAL.
    5. Jiang, Xiaodan & Fan, Houming & Luo, Meifeng & Xu, Zhenlin, 2020. "Strategic port competition in multimodal network development considering shippers’ choice," Transport Policy, Elsevier, vol. 90(C), pages 68-89.
    6. Weihua Liu & Xinran Shen & Di Wang, 2020. "The impacts of dual overconfidence behavior and demand updating on the decisions of port service supply chain: a real case study from China," Annals of Operations Research, Springer, vol. 291(1), pages 565-604, August.
    7. Nihan Kabadayı, 2020. "An Integrated Fuzzy DEMATEL and Intuitionistic Fuzzy TOPSIS Method to Evaluate Sustainable Suppliers," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(2), pages 201-226, December.
    8. Janiak, Adam & Krysiak, Tomasz, 2012. "Scheduling jobs with values dependent on their completion times," International Journal of Production Economics, Elsevier, vol. 135(1), pages 231-241.
    9. Koray Altintas & Ozalp Vayvay & Sinan Apak & Emine Cobanoglu, 2020. "An Extended GRA Method Integrated with Fuzzy AHP to Construct a Multidimensional Index for Ranking Overall Energy Sustainability Performances," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    10. Čičić, Mladen & Johansson, Karl Henrik, 2022. "Front-tracking transition system model for traffic state reconstruction, model learning, and control with application to stop-and-go wave dissipation," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 212-236.
    11. Kannan Govindan & R. Sivakumar, 2016. "Green supplier selection and order allocation in a low-carbon paper industry: integrated multi-criteria heterogeneous decision-making and multi-objective linear programming approaches," Annals of Operations Research, Springer, vol. 238(1), pages 243-276, March.
    12. Luu Huu Van & Vincent F. Yu & Luu Quoc Dat & Canh Chi Dung & Shuo-Yan Chou & Nguyen Viet Loc, 2018. "New Integrated Quality Function Deployment Approach Based on Interval Neutrosophic Set for Green Supplier Evaluation and Selection," Sustainability, MDPI, vol. 10(3), pages 1-13, March.
    13. Mohammed, Ahmed & Harris, Irina & Govindan, Kannan, 2019. "A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation," International Journal of Production Economics, Elsevier, vol. 217(C), pages 171-184.
    14. Hosseininasab, Amin & Ahmadi, Abbas, 2015. "Selecting a supplier portfolio with value, development, and risk consideration," European Journal of Operational Research, Elsevier, vol. 245(1), pages 146-156.
    15. Avelina Alejo-Reyes & Erik Cuevas & Alma Rodríguez & Abraham Mendoza & Elias Olivares-Benitez, 2020. "An Improved Grey Wolf Optimizer for a Supplier Selection and Order Quantity Allocation Problem," Mathematics, MDPI, vol. 8(9), pages 1-24, August.
    16. Kannan Govindan & R. Sivakumar, 2016. "Green supplier selection and order allocation in a low-carbon paper industry: integrated multi-criteria heterogeneous decision-making and multi-objective linear programming approaches," Annals of Operations Research, Springer, vol. 238(1), pages 243-276, March.
    17. Mohammad Izadikhah & Reza Farzipoor Saen & Razieh Roostaee, 2018. "How to assess sustainability of suppliers in the presence of volume discount and negative data in data envelopment analysis?," Annals of Operations Research, Springer, vol. 269(1), pages 241-267, October.
    18. Zhou, Jianheng & Luo, Yao, 2023. "Bayes information updating and multiperiod supply chain screening," International Journal of Production Economics, Elsevier, vol. 256(C).
    19. Chi Xie & Jennifer Duthie, 2015. "An Excess-Demand Dynamic Traffic Assignment Approach for Inferring Origin-Destination Trip Matrices," Networks and Spatial Economics, Springer, vol. 15(4), pages 947-979, December.
    20. Wei Song & Zhiya Chen & Aijun Liu & Qiuyun Zhu & Wei Zhao & Sang-Bing Tsai & Hui Lu, 2018. "A Study on Green Supplier Selection in Dynamic Environment," Sustainability, MDPI, vol. 10(4), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15106-:d:973058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.