IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14829-d968622.html
   My bibliography  Save this article

Investigating the Index of Sustainable Development and Reduction in Greenhouse Gases of Renewable Energies

Author

Listed:
  • Vadim V. Ponkratov

    (Department of Public Finance, Financial University under the Government of the Russian Federation, 125167 Moscow, Russia)

  • Alexey S. Kuznetsov

    (Laser and Optoelectronic Systems Department, Bauman Moscow State Technical University, 105005 Moscow, Russia)

  • Iskandar Muda

    (Department of Doctoral Program, Faculty Economic and Business, Universitas Sumatera Utara, Medan 20222, Indonesia)

  • Miftahul Jannah Nasution

    (Badan Penelitian dan Pengembangan Daerah Provinsi Lampung, Kota Bandar Lampung 35212, Indonesia)

  • Mohammed Al-Bahrani

    (Chemical Engineering and Petroleum Industries Department, Al-Mustaqbal University College, Babylon 51001, Iraq)

  • Hikmet Ş. Aybar

    (Department of Mechanical Engineering, Eastern Mediterranean University, TRNC, Via Mersin 10, Famagusta 99628, Turkey
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan)

Abstract

Considering the limited resources of fossil energy and the problems caused by the emission of greenhouse gases, it is necessary to pay more attention to renewable energies, because in this way, the goals of sustainable development can be achieved. The importance of renewable energies in sustainable development, reducing greenhouse gases and increasing energy security on the one hand, and the need for financial resources and large investments for renewable energy projects on the other hand, doubles the role and importance of financial development in the development of renewable energies. Considering the importance of this issue, the present study examines the impact of the development of modern facilities and renewable energy technology. In this study, dynamic interactions in the Sustainable-Energy-Energy Development Pattern of carbon dioxide are investigated using the Bayesian Vector Auto Regression (BVAR) method. One of the most important indicators for evaluating sustainable development is the modified pure arrangement (GS). For this purpose, this index was used as a sustainable development index. The results indicate that the effect of positive impulse on renewable and renewable energy consumption on sustainable development in Uganda is positive. In addition, the positive shock of renewable and renewable energy consumption increases the emissions of carbon dioxide pollutants to a different extent. In addition, the effect of the growth of sustainable development index on renewable energy consumption and renewal energy consumption is (CO 2 ) negative. The research results show that based on the RMSE criterion, the former SSVS-Full function was used to investigate the impact of renewable energy consumption on sustainable development and the independent Normal-Wish art function was used. Therefore, in this research, the dynamic relationships between sustainable development, energy consumption (separately from renewable and non-renewable energy) and CO 2 emissions are investigated.

Suggested Citation

  • Vadim V. Ponkratov & Alexey S. Kuznetsov & Iskandar Muda & Miftahul Jannah Nasution & Mohammed Al-Bahrani & Hikmet Ş. Aybar, 2022. "Investigating the Index of Sustainable Development and Reduction in Greenhouse Gases of Renewable Energies," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14829-:d:968622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bilal Khalid & Mariusz Urbański & Monika Kowalska-Sudyka & Elżbieta Wysłocka & Barbara Piontek, 2021. "Evaluating Consumers’ Adoption of Renewable Energy," Energies, MDPI, vol. 14(21), pages 1-15, November.
    2. Elie, Luc & Granier, Caroline & Rigot, Sandra, 2021. "The different types of renewable energy finance: A Bibliometric analysis," Energy Economics, Elsevier, vol. 93(C).
    3. Franziska Müller & Manuel Neumann & Carsten Elsner & Simone Claar, 2021. "Assessing African Energy Transitions: Renewable Energy Policies, Energy Justice, and SDG 7," Politics and Governance, Cogitatio Press, vol. 9(1), pages 119-130.
    4. Mohammad Hosein Mohammadnezami & Mehdi Ali Ehyaei & Marc A. Rosen & Mohammad Hossein Ahmadi, 2015. "Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System," Sustainability, MDPI, vol. 7(3), pages 1-16, March.
    5. Potrč, Sanja & Čuček, Lidija & Martin, Mariano & Kravanja, Zdravko, 2021. "Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Amir Molajou & Parsa Pouladi & Abbas Afshar, 2021. "Incorporating Social System into Water-Food-Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4561-4580, October.
    7. Muhammad Heikal Hasan & Teuku Meurah Indra Mahlia & M. Mofijur & I.M. Rizwanul Fattah & Fitri Handayani & Hwai Chyuan Ong & A. S. Silitonga, 2021. "A Comprehensive Review on the Recent Development of Ammonia as a Renewable Energy Carrier," Energies, MDPI, vol. 14(13), pages 1-32, June.
    8. Abbas Afshar & Elham Soleimanian & Hossein Akbari Variani & Masoud Vahabzadeh & Amir Molajou, 2022. "The conceptual framework to determine interrelations and interactions for holistic Water, Energy, and Food Nexus," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10119-10140, August.
    9. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oriza Candra & Abdeljelil Chammam & José Ricardo Nuñez Alvarez & Iskandar Muda & Hikmet Ş. Aybar, 2023. "The Impact of Renewable Energy Sources on the Sustainable Development of the Economy and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 15(3), pages 1-11, January.
    2. Oriza Candra & Narukullapati Bharath Kumar & Ngakan Ketut Acwin Dwijendra & Indrajit Patra & Ali Majdi & Untung Rahardja & Mikhail Kosov & John William Grimaldo Guerrero & Ramaswamy Sivaraman, 2022. "Energy Simulation and Parametric Analysis of Water Cooled Thermal Photovoltaic Systems: Energy and Exergy Analysis of Photovoltaic Systems," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Muhammad Amir Raza & Muhammad Mohsin Aman & Altaf Hussain Rajpar & Mohamed Bashir Ali Bashir & Touqeer Ahmed Jumani, 2022. "Towards Achieving 100% Renewable Energy Supply for Sustainable Climate Change in Pakistan," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    5. Yuanyuan He & Luxin Wan & Manli Zhang & Huijuan Zhao, 2022. "Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    6. Nikolaos Apostolopoulos & Alexandros Kakouris & Panagiotis Liargovas & Petar Borisov & Teodor Radev & Sotiris Apostolopoulos & Sofia Daskou & Eleni Ε. Anastasopoulou, 2023. "Just Transition Policies, Power Plant Workers and Green Entrepreneurs in Greece, Cyprus and Bulgaria: Can Education and Retraining Meet the Challenge?," Sustainability, MDPI, vol. 15(23), pages 1-21, November.
    7. Sebastian Schär & Jutta Geldermann, 2021. "Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    8. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    9. Piotr Kułyk & Łukasz Augustowski, 2021. "Economic Profitability of a Hybrid Approach to Powering Residual Households from Natural Sources in Two Wind Zones of the Lubuskie Voivodeship in Poland," Energies, MDPI, vol. 14(21), pages 1-15, October.
    10. Anca Vasilica Tănasie & Luiza Loredana Năstase & Luminița Lucia Vochița & Andra Maria Manda & Geanina Iulia Boțoteanu & Cătălina Soriana Sitnikov, 2022. "Green Economy—Green Jobs in the Context of Sustainable Development," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    11. Laurence L. Delina & Rainbow Yi Hung Lam & Wing Shun Tang & Ka Ying Wong, 2023. "Mapping the actor landscape of a future fintech-funded renewable energy ecosystem in Hong Kong," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(3), pages 419-427, September.
    12. T. M. Indra Mahlia & I. M. Rizwanul Fattah, 2021. "Energy for Sustainable Future," Energies, MDPI, vol. 14(23), pages 1-2, November.
    13. Ewelina Olba-Zięty & Jakub Jan Zięty & Mariusz Jerzy Stolarski, 2023. "External Environmental Costs of Solid Biomass Production against the Legal and Political Background in Europe," Energies, MDPI, vol. 16(10), pages 1-27, May.
    14. Kamila Słupińska & Marek Wieruszewski & Piotr Szczypa & Anna Kożuch & Krzysztof Adamowicz, 2022. "Public Perception of the Use of Woody Biomass for Energy Purposes in the Evaluation of Content and Information Management on the Internet," Energies, MDPI, vol. 15(19), pages 1-11, September.
    15. Shirley Thompson, 2023. "Strategic Analysis of the Renewable Electricity Transition: Power to the World without Carbon Emissions?," Energies, MDPI, vol. 16(17), pages 1-34, August.
    16. Chung-Geon Lee & La-Hoon Cho & Seok-Jun Kim & Sun-Yong Park & Dae-Hyun Kim, 2021. "Comparative Analysis of Combined Heating Systems Involving the Use of Renewable Energy for Greenhouse Heating," Energies, MDPI, vol. 14(20), pages 1-22, October.
    17. Ghorbani, Bahram & Zendehboudi, Sohrab & Moradi, Mostafa, 2021. "Development of an integrated structure of hydrogen and oxygen liquefaction cycle using wind turbines, Kalina power generation cycle, and electrolyzer," Energy, Elsevier, vol. 221(C).
    18. Keyu Li & Haslinda Binti Hashim & Nor Siah Binti Jaharuddin, 2024. "Research on Brand Equity of Intelligent Connected Vehicles in China," Asian Social Science, Canadian Center of Science and Education, vol. 20(2), pages 1-75, April.
    19. Hamed Jafari Kaleybar & Hossein Hafezi & Morris Brenna & Roberto Sebastiano Faranda, 2024. "Smart AC-DC Coupled Hybrid Railway Microgrids Integrated with Renewable Energy Sources: Current and Next Generation Architectures," Energies, MDPI, vol. 17(5), pages 1-27, March.
    20. Wang, Cong & Feng, Yu & Liu, Zekuan & Wang, Yilin & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14829-:d:968622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.