IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14099-d956824.html
   My bibliography  Save this article

A Study on the Dynamic Relationship between Landscape Information and Heat Island Intensity of Urban Growth Patterns—A Case of Five Cities in the Beijing–Tianjin–Hebei City Cluster

Author

Listed:
  • Jianshe Liang

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China)

  • Yongping Bai

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China)

  • Zuqiao Gao

    (College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730030, China)

  • Xuedi Yang

    (College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730030, China)

  • Lingwei Li

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China)

  • Chunyue Zhang

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China)

  • Fuwei Qiao

    (College of Economics, Northwest Normal University, Lanzhou 730070, China)

Abstract

Urban heat islands (UHIs) endanger the health of urban residents. Different urban growth patterns (UGPs) have different effects on heat islands. However, the dynamic relationship between UGP landscape information and urban surface heat island intensity (SUHII) remains unclear. This study explored the dynamic relationship between SUHII and UGP landscape information through spatial regression and landscape pattern analysis using Landsat imagery and urban construction land data from five cities in the Beijing–Tianjin–Hebei urban agglomeration from 2010 to 2018. The results show that SUHII increase areas overlap with expansion patches, and the edge expansion and outlying areas show a warming effect. The influence of the edge expansion landscape area and pattern on SUHII changes is greater than the other two growth patterns. The relationship between UGPs’ landscape information and SUHII changes varies among cities. The larger the city size, the stronger the influence of landscape information. Among the landscape patterns, the influence of the landscape area and pattern on SUHII change is large and the influence of landscape fragmentation is smaller. Exploring the dynamic relationship between UGP landscape information and SUHII is conducive to optimizing the spatial layout and pattern selection of urban development and providing a scientific reference for sustainable and livable urban development planning.

Suggested Citation

  • Jianshe Liang & Yongping Bai & Zuqiao Gao & Xuedi Yang & Lingwei Li & Chunyue Zhang & Fuwei Qiao, 2022. "A Study on the Dynamic Relationship between Landscape Information and Heat Island Intensity of Urban Growth Patterns—A Case of Five Cities in the Beijing–Tianjin–Hebei City Cluster," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14099-:d:956824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Min Xu & Chunyang He & Zhifeng Liu & Yinyin Dou, 2016. "How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    2. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    3. Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
    4. Rao, Yingxue & Dai, Jingyi & Dai, Deyi & He, Qingsong, 2021. "Effect of urban growth pattern on land surface temperature in China: A multi-scale landscape analysis of 338 cities," Land Use Policy, Elsevier, vol. 103(C).
    5. He, Qingsong & He, Weishan & Song, Yan & Wu, Jiayu & Yin, Chaohui & Mou, Yanchuan, 2018. "The impact of urban growth patterns on urban vitality in newly built-up areas based on an association rules analysis using geographical ‘big data’," Land Use Policy, Elsevier, vol. 78(C), pages 726-738.
    6. Seungwon Kang & Dalbyul Lee & Jiyong Park & Juchul Jung, 2022. "Exploring Urban Forms Vulnerable to Urban Heat Islands: A Multiscale Analysis," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rao, Yingxue & Dai, Jingyi & Dai, Deyi & He, Qingsong, 2021. "Effect of urban growth pattern on land surface temperature in China: A multi-scale landscape analysis of 338 cities," Land Use Policy, Elsevier, vol. 103(C).
    2. Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
    3. Yan Liu & Zhijie Wang, 2023. "Research Progress and Hotspot Analysis of Urban Heat Island Effects Based on Cite Space Analysis," Land, MDPI, vol. 12(6), pages 1-19, May.
    4. Renyang Wang & Qingsong He & Lu Zhang & Huiying Wang, 2021. "Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China," IJERPH, MDPI, vol. 18(21), pages 1-15, October.
    5. María Ayuda & Fernando Collantes & Vicente Pinilla, 2010. "From locational fundamentals to increasing returns: the spatial concentration of population in Spain, 1787–2000," Journal of Geographical Systems, Springer, vol. 12(1), pages 25-50, March.
    6. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    7. Ruaa Al Juboori & Divya S. Subramaniam & Leslie Hinyard & J. S. Onésimo Sandoval, 2023. "Unveiling Spatial Associations between COVID-19 Severe Health Index, Racial/Ethnic Composition, and Community Factors in the United States," IJERPH, MDPI, vol. 20(17), pages 1-17, August.
    8. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    9. Junming Li & Meijun Jin & Honglin Li, 2019. "Exploring Spatial Influence of Remotely Sensed PM 2.5 Concentration Using a Developed Deep Convolutional Neural Network Model," IJERPH, MDPI, vol. 16(3), pages 1-11, February.
    10. Kristien Werck & Bruno Heyndels & Benny Geys, 2008. "The impact of ‘central places’ on spatial spending patterns: evidence from Flemish local government cultural expenditures," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 32(1), pages 35-58, March.
    11. Pede, Valerien O. & Florax, Raymond J.G.M. & Holt, Matthew T., 2009. "A Spatial Econometric Star Model With An Application To U.S. County Economic Growth, 1969–2003," Working papers 48117, Purdue University, Department of Agricultural Economics.
    12. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    13. Zheng, Xinye & Li, Fanghua & Song, Shunfeng & Yu, Yihua, 2013. "Central government's infrastructure investment across Chinese regions: A dynamic spatial panel data approach," China Economic Review, Elsevier, vol. 27(C), pages 264-276.
    14. Yuping Deng & Helian Xu, 2015. "International Direct Investment and Transboundary Pollution: An Empirical Analysis of Complex Networks," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    15. Simonetta Longhi & Peter Nijkamp & Jacques Poot, 2006. "Spatial Heterogeneity And The Wage Curve Revisited," Journal of Regional Science, Wiley Blackwell, vol. 46(4), pages 707-731, October.
    16. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    17. Eveline Van Leeuwen & Sandy Dall'erba, 2000. "Does Agricultural Employment Benefit From EU Support?," Regional and Urban Modeling 283600099, EcoMod.
    18. Tapsuwan, Sorada & Polyakov, Maksym & Bark, Rosalind & Nolan, Martin, 2015. "Valuing the Barmah–Millewa Forest and in stream river flows: A spatial heteroskedasticity and autocorrelation consistent (SHAC) approach," Ecological Economics, Elsevier, vol. 110(C), pages 98-105.
    19. Cassette, Aurélie & Paty, Sonia, 2006. "La concurrence fiscale entre communes est-elle plus intense en milieu urbain qu’en milieu rural ?," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 78.
    20. Qingsong He & Miao Yan & Linzi Zheng & Bo Wang & Jiang Zhou, 2023. "The Effect of Urban Form on Urban Shrinkage—A Study of 293 Chinese Cities Using Geodetector," Land, MDPI, vol. 12(4), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14099-:d:956824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.