IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2637-d160233.html
   My bibliography  Save this article

Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia

Author

Listed:
  • Bing Li

    (Department of Geography, Yanbian University, Yanji 133000, China)

  • Zhifeng Liu

    (Center for Human-Environment System Sustainability (CHESS), State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing 100875, China
    Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Ying Nan

    (Department of Geography, Yanbian University, Yanji 133000, China)

  • Shengnan Li

    (Department of Geography, Yanbian University, Yanji 133000, China)

  • Yanmin Yang

    (Department of Geography, Yanbian University, Yanji 133000, China)

Abstract

Quantification of the spatial pattern of urban heat island intensities across the transnational urban agglomeration of the Tumen River is important for the promotion of sustainable regional development. This study employed Landsat images and MODIS LST data obtained in 2016 to determine the intensity of urban heat islands in this region, enabling direct comparison of data from the sub-regions of China, Democratic People’s Republic of Korea (DPRK), and Russia. The average urban heat island intensity for the region was found to be 1.0 °C, with the highest intensity of 3.0 °C occurring during the summer time. The intensity of urban heat islands on the Chinese side was higher than on the other two sides, with city size, socio-economic development levels and vegetation coverage significantly affect their intensity. Urban heat island effects in Chinese cities in the region contribute increases in maximum summer temperatures and the number of high-temperature days that pose a threat to the health of their residents. The factors that influence urban heat island intensities in these cities and the impacts of urban heat island effects on the quality of life and health of residents are discussed. Therefore, it is desirable to reduce the impact of urban heat island effects on cities in the region by increasing the area of green spaces they contain, as well as controlling their size and population.

Suggested Citation

  • Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2637-:d:160233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2637/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2637/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui Tao & Ying Nan & Zhi-Feng Liu, 2017. "Spatiotemporal Patterns of Forest in the Transnational Area of Changbai Mountain from 1977 to 2015: A Comparative Analysis of the Chinese and DPRK Sub-Regions," Sustainability, MDPI, vol. 9(6), pages 1-23, June.
    2. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    3. Weibo Liu & Johannes Feddema & Leiqiu Hu & Ashley Zung & Nathaniel Brunsell, 2017. "Seasonal and Diurnal Characteristics of Land Surface Temperature and Major Explanatory Factors in Harris County, Texas," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    4. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    5. Zhifeng Liu & Chunyang He & Jianguo Wu, 2016. "General Spatiotemporal Patterns of Urbanization: An Examination of 16 World Cities," Sustainability, MDPI, vol. 8(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Tao & Yuchen Hu & Guoan Tang & Tong Zhou, 2021. "Long-Term Evolution of the SUHI Footprint and Urban Expansion Based on a Temperature Attenuation Curve in the Yangtze River Delta Urban Agglomeration," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    2. Sijia He & Xiaoyun Wang & Jingru Dong & Baocheng Wei & Hanming Duan & Jizong Jiao & Yaowen Xie, 2019. "Three-Dimensional Urban Expansion Analysis of Valley-Type Cities: A Case Study of Chengguan District, Lanzhou, China," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    3. Xiaojun Zheng & Jing Fu & Noelikanto Ramamonjisoa & Weihong Zhu & Chunguang He & Chunyan Lu, 2019. "Relationship between Wetland Plant Communities and Environmental Factors in the Tumen River Basin in Northeast China," Sustainability, MDPI, vol. 11(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    2. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.
    3. W. J. W. Botzen & M. L. Martinius & P. Bröde & M. A. Folkerts & P. Ignjacevic & F. Estrada & C. N. Harmsen & H. A. M. Daanen, 2020. "Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands," Climatic Change, Springer, vol. 162(2), pages 545-562, September.
    4. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    5. Hassan Saeed Khan & Riccardo Paolini & Mattheos Santamouris & Peter Caccetta, 2020. "Exploring the Synergies between Urban Overheating and Heatwaves (HWs) in Western Sydney," Energies, MDPI, vol. 13(2), pages 1-17, January.
    6. Qunfang Huang & Yuqi Lu, 2015. "The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China," IJERPH, MDPI, vol. 12(8), pages 1-17, July.
    7. Huihui Wang & Yunsong Yang & Suru Liu & Hanyu Xue & Tingting Xu & Wanlin He & Xiaoyong Gao & Ruifeng Jiang, 2024. "Unveiling the Coupling Coordination and Interaction Mechanism between the Local Heat Island Effect and Urban Resilience in China," Sustainability, MDPI, vol. 16(6), pages 1-28, March.
    8. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    9. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    10. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    11. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    12. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    13. Michael Tong & Berhanu Wondmagegn & Jianjun Xiang & Alana Hansen & Keith Dear & Dino Pisaniello & Blesson Varghese & Jianguo Xiao & Le Jian & Benjamin Scalley & Monika Nitschke & John Nairn & Hilary B, 2022. "Hospitalization Costs of Respiratory Diseases Attributable to Temperature in Australia and Projections for Future Costs in the 2030s and 2050s under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    14. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    15. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    16. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    17. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    18. Menconi, M.E. & Giordano, S. & Grohmann, D., 2022. "Revisiting global food production and consumption patterns by developing resilient food systems for local communities," Land Use Policy, Elsevier, vol. 119(C).
    19. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    20. Jeong-Hee Eum & Kwon Kim & Eung-Ho Jung & Paikho Rho, 2018. "Evaluation and Utilization of Thermal Environment Associated with Policy: A Case Study of Daegu Metropolitan City in South Korea," Sustainability, MDPI, vol. 10(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2637-:d:160233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.