IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12920-d937886.html
   My bibliography  Save this article

Location of the Intermediate Echelon to Add Purchase Value and Sustainability Criteria in a Mining Supply Network

Author

Listed:
  • Rodrigo Barraza

    (Department of Industrial Engineering, Universidad de Santiago de Chile, Santiago 9160000, Chile
    School of Industrial Engineering, Universidad Santo Tomás, Santiago 8370003, Chile)

  • Juan M. Sepúlveda

    (Department of Industrial Engineering, Universidad de Santiago de Chile, Santiago 9160000, Chile)

  • Ivan Derpich

    (Department of Industrial Engineering, Universidad de Santiago de Chile, Santiago 9160000, Chile)

Abstract

This study presents an operational analysis to determine the location of an intermediate hub in a supply network for the mining industry, incorporating sustainability criteria through an optimization model. The sector of small, medium, and artisan mining enterprises (PAMMA), in Chile, has the same pressure as large mining to meet the demands of sustainability in the medium term, but the network of PAMMA facilities is precarious and requires government support for development. One strategy to improve the supply network is to locate intermediate points with limited capacities (called purchasing powers) to help the viability of the business model by incorporating sustainability objectives, such as diminishing the movement of minerals, as well as reducing the carbon footprint and gas emissions, all in support the promotion of the activity of small miners. In order to achieve the strategy above, a mathematical model of location and sustainable capacity is proposed. A grouping of suppliers was carried out to establish the number of mining suppliers in each cluster and the location of the intermediate hubs. Then, the prioritization of the parameters and classification of the processing plant alternatives was performed to define a vector of weights to rank the degree of sustainability. A sustainability matrix was calculated on the basis of the distances and transportation costs between the supplier hubs of the supply network and the processing plants. With each of these factors, a capacity model was developed to validate the mineral process flows in the supply network and estimate the expected productivity levels. The model is intended to support operational decision making when determining the location of an intermediate purchasing power that reduces the impact of transportation costs and emissions. The model was applied in a case study of the supply network in the small mining sector in Chile. The results recommend the location of hubs to add value and encourage investment in the PAMMA supply network.

Suggested Citation

  • Rodrigo Barraza & Juan M. Sepúlveda & Ivan Derpich, 2022. "Location of the Intermediate Echelon to Add Purchase Value and Sustainability Criteria in a Mining Supply Network," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12920-:d:937886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gérard Gaudet & Ngo Van Long & Antoine Soubeyran, 1999. "Upstream-Downstream Specialization by Integrated Firms in a Partially Integrated Industry," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 14(4), pages 321-335, June.
    2. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    3. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    4. David Humphreys, 2019. "The mining industry after the boom," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(2), pages 145-151, July.
    5. Pietro Giovanni & Georges Zaccour, 2019. "A selective survey of game-theoretic models of closed-loop supply chains," 4OR, Springer, vol. 17(1), pages 1-44, March.
    6. Niero, Monia & Olsen, Stig Irving, 2016. "Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 18-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cotrina-Teatino, Marco A. & Marquina-Araujo, Jairo J., 2025. "Circular economy in the mining industry: A bibliometric and systematic literature review," Resources Policy, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro De Giovanni & Georges Zaccour, 2022. "A selective survey of game-theoretic models of closed-loop supply chains," Annals of Operations Research, Springer, vol. 314(1), pages 77-116, July.
    2. Manju Saroha & Dixit Garg & Sunil Luthra, 2022. "Analyzing the circular supply chain management performance measurement framework: the modified balanced scorecard technique," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 951-960, June.
    3. Ehsan Shekarian & Simme Douwe Flapper, 2021. "Analyzing the Structure of Closed-Loop Supply Chains: A Game Theory Perspective," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    4. Luttiely Santos Oliveira & Ricardo Luiz Machado, 2021. "Application of optimization methods in the closed-loop supply chain: a literature review," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 357-400, February.
    5. Wu, Cheng-Han, 2021. "A dynamic perspective of government intervention in a competitive closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 294(1), pages 122-137.
    6. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    7. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Patricia van Loon & Luk N. Van Wassenhove & Ales Mihelic, 2022. "Designing a circular business strategy: 7 years of evolution at a large washing machine manufacturer," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1030-1041, March.
    9. Ramani, Vinay & De Giovanni, Pietro, 2017. "A two-period model of product cannibalization in an atypical Closed-loop Supply Chain with endogenous returns: The case of DellReconnect," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1009-1027.
    10. Ghanei, Shima & Contreras, Ivan & Cordeau, Jean-François, 2023. "A two-stage stochastic collaborative intertwined supply network design problem under multiple disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    11. Mehmet Talha Dulman & Surendra M. Gupta, 2018. "Evaluation of Maintenance and EOL Operation Performance of Sensor-Embedded Laptops," Logistics, MDPI, vol. 2(1), pages 1-22, January.
    12. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    14. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    15. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    16. Meshal Aldawsari & Mahmoud M. El-Halwagi, 2025. "Resilience Assessment and Sustainability Enhancement of Gas and CO 2 Utilization via Carbon–Hydrogen–Oxygen Symbiosis Networks," Sustainability, MDPI, vol. 17(19), pages 1-22, September.
    17. Khalilullah Mayar & David G. Carmichael & Xuesong Shen, 2022. "Resilience and Systems—A Review," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    18. Tsan-Ming Choi, 2023. "Supply chain financing using blockchain: impacts on supply chains selling fashionable products," Annals of Operations Research, Springer, vol. 331(1), pages 393-415, December.
    19. Lorenzo Bruno Prataviera & Alessandro Creazza & Marco Melacini & Fabrizio Dallari, 2022. "Heading for Tomorrow: Resilience Strategies for Post-COVID-19 Grocery Supply Chains," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    20. Jiafu Su & Chi Li & Qingjun Zeng & Jiaquan Yang & Jie Zhang, 2019. "A Green Closed-Loop Supply Chain Coordination Mechanism Based on Third-Party Recycling," Sustainability, MDPI, vol. 11(19), pages 1-14, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12920-:d:937886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.