IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v2y2018i1p3-d125841.html
   My bibliography  Save this article

Evaluation of Maintenance and EOL Operation Performance of Sensor-Embedded Laptops

Author

Listed:
  • Mehmet Talha Dulman

    (Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA)

  • Surendra M. Gupta

    (Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA)

Abstract

Sensors are commonly employed to monitor products during their life cycles and to remotely and continuously track their usage patterns. Installing sensors into products can help generate useful data related to the conditions of products and their components, and this information can subsequently be used to inform EOL decision-making. As such, embedded sensors can enhance the performance of EOL product processing operations. The information collected by the sensors can also be used to estimate and predict product failures, thereby helping to improve maintenance operations. This paper describes a study in which system maintenance and EOL processes were combined and closed-loop supply chain systems were constructed to analyze the financial contribution that sensors can make to these procedures by using discrete event simulation to model and compare regular systems and sensor-embedded systems. The factors that had an impact on the performance measures, such as disassembly cost, maintenance cost, inspection cost, sales revenues, and profitability, were determined and a design of experiments study was carried out. The experiment results were compared, and pairwise t -tests were executed. The results reveal that sensor-embedded systems are significantly superior to regular systems in terms of the identified performance measures.

Suggested Citation

  • Mehmet Talha Dulman & Surendra M. Gupta, 2018. "Evaluation of Maintenance and EOL Operation Performance of Sensor-Embedded Laptops," Logistics, MDPI, vol. 2(1), pages 1-22, January.
  • Handle: RePEc:gam:jlogis:v:2:y:2018:i:1:p:3-:d:125841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/2/1/3/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/2/1/3/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D-H Lee & P Xirouchakis, 2004. "A two-stage heuristic for disassembly scheduling with assembly product structure," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(3), pages 287-297, March.
    2. Barba-Gutierrez, Y. & Adenso-Diaz, B. & Gupta, S.M., 2008. "Lot sizing in reverse MRP for scheduling disassembly," International Journal of Production Economics, Elsevier, vol. 111(2), pages 741-751, February.
    3. Sgarbossa, Fabio & Russo, Ivan, 2017. "A proactive model in sustainable food supply chain: Insight from a case study," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 596-606.
    4. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    5. Moore, Kendra E. & Gungor, Askiner & Gupta, Surendra M., 2001. "Petri net approach to disassembly process planning for products with complex AND/OR precedence relationships," European Journal of Operational Research, Elsevier, vol. 135(2), pages 428-449, December.
    6. Jeihoonian, Mohammad & Kazemi Zanjani, Masoumeh & Gendreau, Michel, 2016. "Accelerating Benders decomposition for closed-loop supply chain network design: Case of used durable products with different quality levels," European Journal of Operational Research, Elsevier, vol. 251(3), pages 830-845.
    7. Ondemir, Onder & Gupta, Surendra M., 2014. "A multi-criteria decision making model for advanced repair-to-order and disassembly-to-order system," European Journal of Operational Research, Elsevier, vol. 233(2), pages 408-419.
    8. Das, Kanchan & Rao Posinasetti, Nageswara, 2015. "Addressing environmental concerns in closed loop supply chain design and planning," International Journal of Production Economics, Elsevier, vol. 163(C), pages 34-47.
    9. Chen, Wenyi & Kucukyazici, Beste & Verter, Vedat & Jesús Sáenz, María, 2015. "Supply chain design for unlocking the value of remanufacturing under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 804-819.
    10. Wang, Wenyuan & Wang, Yue & Mo, Daniel & Tseng, Mitchell M., 2017. "Managing component reuse in remanufacturing under product diffusion dynamics," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 551-560.
    11. James D. Abbey & Margaret G. Meloy & V. Daniel R. Guide Jr. & Selin Atalay, 2015. "Remanufactured Products in Closed-Loop Supply Chains for Consumer Goods," Production and Operations Management, Production and Operations Management Society, vol. 24(3), pages 488-503, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsen Tehrani & Surendra M. Gupta, 2021. "Designing a Sustainable Green Closed-Loop Supply Chain under Uncertainty and Various Capacity Levels," Logistics, MDPI, vol. 5(2), pages 1-31, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    2. Gong, Hailei & Zhang, Zhi-Hai, 2022. "Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 297(2), pages 496-510.
    3. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    4. Xu, Xun & Zeng, Shuo & He, Yuanjie, 2017. "The influence of e-services on customer online purchasing behavior toward remanufactured products," International Journal of Production Economics, Elsevier, vol. 187(C), pages 113-125.
    5. Patricia van Loon & Luk N. Van Wassenhove & Ales Mihelic, 2022. "Designing a circular business strategy: 7 years of evolution at a large washing machine manufacturer," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1030-1041, March.
    6. Ramani, Vinay & De Giovanni, Pietro, 2017. "A two-period model of product cannibalization in an atypical Closed-loop Supply Chain with endogenous returns: The case of DellReconnect," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1009-1027.
    7. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    8. Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2016. "Closed-loop supply chains: What reverse logistics factors influence performance?," International Journal of Production Economics, Elsevier, vol. 175(C), pages 35-49.
    9. Vishal V. Agrawal & Atalay Atasu & Luk N. Van Wassenhove, 2019. "OM Forum—New Opportunities for Operations Management Research in Sustainability," Service Science, INFORMS, vol. 21(1), pages 1-12, January.
    10. Ondemir, Onder & Gupta, Surendra M., 2014. "A multi-criteria decision making model for advanced repair-to-order and disassembly-to-order system," European Journal of Operational Research, Elsevier, vol. 233(2), pages 408-419.
    11. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    12. Juan Pedro Sepúlveda-Rojas & Rodrigo Ternero, 2020. "Analysis of the Value of Information and Coordination in a Dyadic Closed Loop Supply Chain," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    13. Liangchuan Zhou & Surendra M. Gupta, 2019. "A Pricing and Acquisition Strategy for New and Remanufactured High-Technology Products," Logistics, MDPI, vol. 3(1), pages 1-26, February.
    14. Phantratanamongkol, Supanan & Casalin, Fabrizio & Pang, Gu & Sanderson, Joseph, 2018. "The price-volume relationship for new and remanufactured smartphones," International Journal of Production Economics, Elsevier, vol. 199(C), pages 78-94.
    15. Tong Shu & Qian Liu & Shou Chen & Shouyang Wang & Kin Keung Lai, 2018. "Pricing Decisions of CSR Closed-Loop Supply Chains with Carbon Emission Constraints," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    16. Xiaojiao Qiao & Xiukun Zhao & Jinhui Zou, 2021. "Remanufacturing Marketing Decisions in the Presence of Retailing Platforms in the Carbon Neutrality Era," IJERPH, MDPI, vol. 19(1), pages 1-18, December.
    17. Reddy, K. Nageswara & Kumar, Akhilesh & Choudhary, Alok & Cheng, T. C. Edwin, 2022. "Multi-period green reverse logistics network design: An improved Benders-decomposition-based heuristic approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 735-752.
    18. Cheng-Han Wu, 2021. "Production-quality policy for a make-from-stock remanufacturing system," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 425-456, June.
    19. Hsieh, Chung-Chi & Lathifah, Artya, 2022. "Ordering and waste reuse decisions in a make-to-order system under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1290-1303.
    20. Diabat, Ali & Jebali, Aida, 2021. "Multi-product and multi-period closed loop supply chain network design under take-back legislation," International Journal of Production Economics, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:2:y:2018:i:1:p:3-:d:125841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.