IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12694-d934730.html
   My bibliography  Save this article

Impact of Land Cover Change on a Typical Mining Region and Its Ecological Environment Quality Evaluation Using Remote Sensing Based Ecological Index (RSEI)

Author

Listed:
  • Huan Tang

    (Department of Civil Engineering, Tongling University, Tongling 244061, China)

  • Jiawei Fang

    (Department of Civil Engineering, Tongling University, Tongling 244061, China)

  • Ruijie Xie

    (Tongling Seismic Station, Tongling 244061, China)

  • Xiuli Ji

    (Anhui Zhonghui Urban Planning Survey & Design Institute Company Limited, Tongling 244061, China)

  • Dayong Li

    (Department of Civil Engineering, Tongling University, Tongling 244061, China)

  • Jing Yuan

    (Department of Civil Engineering, Tongling University, Tongling 244061, China
    Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

Abstract

Ecological environment in mining cities has become an important part of ecological construction. This paper takes Tongling, a mining city, as the research area, and uses Landsat series remote sensing images from 2000 to 2020 as data sources. Using the principal component analysis method and the Remote Sensing Ecological Index (RSEI) integrated with four indexes of greenness, humidity, dryness, and heat, the ecological disturbance of the mining area was evaluated and studied. Meanwhile, the land cover spatiotemporal classification of Tongling city was extracted by the maximum likelihood method. Furthermore, landscape metrics were used, based on the information on open-pit mining areas, to quantitatively analyze the ecological environment quality and its change characteristics in the study area. The results show that (1) RSEI can better characterize the ecological quality of Tongling city, greenness and humidity are positively correlated with it, dryness and heat are negatively correlated with it, and dryness and RSEI have the highest correlation coefficient, indicating that urban expansion will cause ecological environment deterioration to a certain extent. (2) The ecological environment quality of the research area showed a “decline-rising” trend, and the mean value of RSEI decreased from 0.706 to 0.644. Spatially, the areas with poor RSEI are mainly distributed in the central urban area and the open-pit mining area in the south. (3) Land cover change leads to changes in landscape metrics, and most landscape-level metrics are positively or negatively correlated with RSEI. The more concentrated the land cover type distribution is, the smaller the change is, and the more regional RSEI can be improved. (4) The mean value of RESI of the ten open-pit mining areas in Tongling city decreased significantly, with a maximum decrease of 52.73%. Among them, the RESI decline rate in the area around the no.1 open pit mine is 0.034/year. The ecological degradation in Tongling city is attributed to the rapid expansion of built-up areas and the development of the mining industry. The research results can provide a scientific basis for protecting the ecological environment of mining cities.

Suggested Citation

  • Huan Tang & Jiawei Fang & Ruijie Xie & Xiuli Ji & Dayong Li & Jing Yuan, 2022. "Impact of Land Cover Change on a Typical Mining Region and Its Ecological Environment Quality Evaluation Using Remote Sensing Based Ecological Index (RSEI)," Sustainability, MDPI, vol. 14(19), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12694-:d:934730
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12694/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12694/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qizhi Wang & Maofang Gao & Huijie Zhang, 2022. "Agroecological Efficiency Evaluation Based on Multi-Source Remote Sensing Data in a Typical County of the Tibetan Plateau," Land, MDPI, vol. 11(4), pages 1-24, April.
    2. Shang, Delei & Yin, Guangzhi & Li, Xiaoshuang & Li, Yaoji & Jiang, Changbao & Kang, Xiangtao & Liu, Chao & Zhang, Chi, 2015. "Analysis for Green Mine (phosphate) performance of China: An evaluation index system," Resources Policy, Elsevier, vol. 46(P2), pages 71-84.
    3. Haidong Yu & Juanjuan Zhao, 2020. "The Impact of Environmental Conditions on Urban Eco-Sustainable Total Factor Productivity: A Case Study of 21 Cities in Guangdong Province, China," IJERPH, MDPI, vol. 17(4), pages 1-21, February.
    4. Vesna Popović & Jelena Živanović Miljković & Jonel Subić & Andrei Jean-Vasile & Nedelcu Adrian & Eugen Nicolăescu, 2015. "Sustainable Land Management in Mining Areas in Serbia and Romania," Sustainability, MDPI, vol. 7(9), pages 1-21, August.
    5. Ju, Weimin & Gao, Ping & Wang, Jun & Zhou, Yanlian & Zhang, Xuehui, 2010. "Combining an ecological model with remote sensing and GIS techniques to monitor soil water content of croplands with a monsoon climate," Agricultural Water Management, Elsevier, vol. 97(8), pages 1221-1231, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linye Zhu & Yonggui Zhang & Kewen Chen & Qiang Liu & Wenbin Sun, 2023. "Exploring Land-Cover Types and Their Changes in the Open-Pit Mining Area of Ordos City Using Sentinel-2 Imagery," Sustainability, MDPI, vol. 15(19), pages 1-14, September.
    2. Ming Chang & Shuying Meng & Zifan Zhang & Ruiguo Wang & Chao Yin & Yuxia Zhao & Yi Zhou, 2023. "Analysis of Eco-Environmental Quality and Driving Forces in Opencast Coal Mining Area Based on GWANN Model: A Case Study in Shengli Coalfield, China," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    3. Jiajie Zhang & Tinggang Zhou, 2023. "Coupling Coordination Degree between Ecological Environment Quality and Urban Development in Chengdu–Chongqing Economic Circle Based on the Google Earth Engine Platform," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
    4. Haobei Liu & Qi Wang & Na Liu & Hengrui Zhang & Yifei Tan & Zhe Zhang, 2023. "The Impact of Land Use/Cover Change on Ecological Environment Quality and Its Spatial Spillover Effect under the Coupling Effect of Urban Expansion and Open-Pit Mining Activities," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    5. Enjun Gong & Fangxin Shi & Zhihui Wang & Qingfeng Hu & Jing Zhang & Hongxin Hai, 2022. "Evaluating Environmental Quality and Its Driving Force in Northeastern China Using the Remote Sensing Ecological Index," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    6. Shuzhen Mao & Jiyun She & Yi Zhang, 2023. "Spatial-Temporal Evolution of Land Use Change and Eco-Environmental Effects in the Chang-Zhu-Tan Core Area," Sustainability, MDPI, vol. 15(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Shi & Fei Lin & Xia Jing & Bingyu Li & Yang Shi & Yimin Hu, 2023. "Ecological Environment Quality Assessment of Arid Areas Based on Improved Remote Sensing Ecological Index—A Case Study of the Loess Plateau," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
    2. da Silva Junior, Carlos Antonio & Coutinho, Andressa Dias & de Oliveira-Júnior, José Francisco & Teodoro, Paulo Eduardo & Lima, Mendelson & Shakir, Muhammad & de Gois, Givanildo & Johann, Jerry Adrian, 2018. "Analysis of the impact on vegetation caused by abrupt deforestation via orbital sensor in the environmental disaster of Mariana, Brazil," Land Use Policy, Elsevier, vol. 76(C), pages 10-20.
    3. Wang, Di & Shen, Ye & Zhao, Yueying & He, Wei & Liu, Xue & Qian, Xiangyan & Lv, Tao, 2020. "Integrated assessment and obstacle factor diagnosis of China's scientific coal production capacity based on the PSR sustainability framework," Resources Policy, Elsevier, vol. 68(C).
    4. Jiskani, Izhar Mithal & Cai, Qingxiang & Zhou, Wei & Ali Shah, Syed Ahsan, 2021. "Green and climate-smart mining: A framework to analyze open-pit mines for cleaner mineral production," Resources Policy, Elsevier, vol. 71(C).
    5. Luís Silva & Luís Alcino Conceição & Fernando Cebola Lidon & Benvindo Maçãs, 2023. "Remote Monitoring of Crop Nitrogen Nutrition to Adjust Crop Models: A Review," Agriculture, MDPI, vol. 13(4), pages 1-23, April.
    6. Kral Pavol & Janoskova Katarina & Lazaroiu George & Suler Petr, 2020. "Impact of Selected Socio-Demographic Characteristics on Branded Product Preference in Consumer Markets," Management & Marketing, Sciendo, vol. 15(4), pages 570-586, December.
    7. Junjie Cao & Yao Zhang & Taoyuan Wei & Hui Sun, 2021. "Temporal–Spatial Evolution and Influencing Factors of Coordinated Development of the Population, Resources, Economy and Environment (PREE) System: Evidence from 31 Provinces in China," IJERPH, MDPI, vol. 18(24), pages 1-22, December.
    8. Dereje Teklemariam & Hossein Azadi & Jan Nyssen & Mitiku Haile & Frank Witlox, 2016. "How Sustainable Is Transnational Farmland Acquisition in Ethiopia? Lessons Learned from the Benishangul-Gumuz Region," Sustainability, MDPI, vol. 8(3), pages 1-27, February.
    9. Izabela Jonek-Kowalska & Marian Turek, 2022. "The Economic Situation of Polish Cities in Post-Mining Regions. Long-Term Analysis on the Example of the Upper Silesian Coal Basin," Energies, MDPI, vol. 15(9), pages 1-21, April.
    10. Liu, Quanlong & Qiu, Zunxiang & Li, Ma & Shang, Jianping & Niu, Weichao, 2023. "Evaluation and empirical research on green mine construction in coal industry based on the AHP-SPA model," Resources Policy, Elsevier, vol. 82(C).
    11. Bryan Salgado-Almeida & Daniel A. Falquez-Torres & Paola L. Romero-Crespo & Priscila E. Valverde-Armas & Fredy Guzmán-Martínez & Samantha Jiménez-Oyola, 2022. "Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    12. Shuai Li & Lifeng Yu & Wanjun Jiang & Haoxuan Yu & Xinmin Wang, 2022. "The Recent Progress China Has Made in Green Mine Construction, Part I: Mining Groundwater Pollution and Sustainable Mining," IJERPH, MDPI, vol. 19(9), pages 1-19, May.
    13. Silva, Lauana Blenda & Comini, Indira Bifano & Alves, Eliana Boaventura Bernardes Moura & da Rocha, Samuel José Silva Soares & Jacovine, Laércio Antônio Gonçalves, 2021. "Compensating the negative environmental impacts of mining with financial mechanisms in Brazil," Land Use Policy, Elsevier, vol. 104(C).
    14. Jinhui Chen & Izhar Mithal Jiskani & Aiguo Lin & Chaocheng Zhao & Peixing Jing & Fengjie Liu & Mingyin Lu, 2023. "A hybrid decision model and case study for comprehensive evaluation of green mine construction level," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3823-3842, April.
    15. Pengwen Gao & Alimujiang Kasimu & Yongyu Zhao & Bing Lin & Jinpeng Chai & Tuersunayi Ruzi & Hemiao Zhao, 2020. "Evaluation of the Temporal and Spatial Changes of Ecological Quality in the Hami Oasis Based on RSEI," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    16. Dejiang Luo & Su He & Hao Wu & Long Cheng & Junbo Li, 2023. "An Integrated Approach to Green Mines Based on Hesitant Fuzzy TOPSIS: Green Degree Analysis and Policy Implications," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    17. Pan Wu & Guoyan Zhao & Yang Li, 2022. "Green Mining Strategy Selection via an Integrated SWOT-PEST Analysis and Fuzzy AHP-MARCOS Approach," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    18. Yuan Zhao & Guoyan Zhao & Jing Zhou & Dianfei Pei & Weizhang Liang & Ju Qiu, 2020. "What Hinders the Promotion of the Green Mining Mode in China? A Game-Theoretical Analysis of Local Government and Metal Mining Companies," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    19. Andreas Endl, 2017. "Addressing “Wicked Problems” through Governance for Sustainable Development—A Comparative Analysis of National Mineral Policy Approaches in the European Union," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    20. Halkos, George & Bampatsou, Christina, 2022. "Measuring environmental efficiency in relation to socio-economic factors: A two stage analysis," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 876-884.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12694-:d:934730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.