IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12303-d927263.html
   My bibliography  Save this article

Renovating Building Groups in the Mediterranean Climate: Cost-Effectiveness of Renewable-Based Heating Alternatives in the Italian Context

Author

Listed:
  • Teresa Blázquez

    (Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, 20133 Milano, Italy)

  • Tiziano Dalla Mora

    (Department of Architecture and Arts, Università IUAV di Venezia, 30135 Venezia, Italy)

  • Simone Ferrari

    (Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, 20133 Milano, Italy)

  • Piercarlo Romagnoni

    (Department of Architecture and Arts, Università IUAV di Venezia, 30135 Venezia, Italy)

  • Lorenzo Teso

    (Department of Architecture and Arts, Università IUAV di Venezia, 30135 Venezia, Italy)

  • Federica Zagarella

    (Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, 20133 Milano, Italy)

Abstract

District level approaches for the renovation of the building stock boost the implementation of energy efficiency measures (EEMs), taking advantage of the economies of scale. International Energy Agency Annex 75 aims to assess the cost-effectiveness of renovation strategies at the district level, combining EEMs and renewable energy sources. For this goal, a building energy model is simulated with the Energy Plus dynamic calculation engine for assessing the generic district of the Italian case study, representing the residential stock from 1960 to 1980, placed in two prevailing space-heating dominated climates; then, a cost-effectiveness evaluation of each scenario is conducted to support stakeholders’ decision making. In particular, envelope insulation is cost-effective only in northern zones, while new decentralized thermal systems are not convenient in any case with current envelopes. Once the envelopes are insulated, decentralized low-temperature air-to-water heat pumps with PV can cover all of the buildings’ energy needs, even implying a small increase in annual costs. The switch to district net scenarios is cost-effective only if coupled with PV. A rise in energy prices brings PV-based strategies under a 10-year PBT, except for solar thermal DH in northern areas, as well as non-PV-based options such as low-temperature HPs or biomass-fuelled DH in warmer and colder zones, respectively.

Suggested Citation

  • Teresa Blázquez & Tiziano Dalla Mora & Simone Ferrari & Piercarlo Romagnoni & Lorenzo Teso & Federica Zagarella, 2022. "Renovating Building Groups in the Mediterranean Climate: Cost-Effectiveness of Renewable-Based Heating Alternatives in the Italian Context," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12303-:d:927263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, F. & Tait, S. & Schellart, A. & Mayfield, M. & Boxall, J., 2020. "Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Arnaudo, Monica & Topel, Monika & Laumert, Björn, 2020. "Techno-economic analysis of demand side flexibility to enable the integration of distributed heat pumps within a Swedish neighborhood," Energy, Elsevier, vol. 195(C).
    3. Toleikyte, Agne & Kranzl, Lukas & Müller, Andreas, 2018. "Cost curves of energy efficiency investments in buildings – Methodologies and a case study of Lithuania," Energy Policy, Elsevier, vol. 115(C), pages 148-157.
    4. Pampuri, Luca & Belliardi, Marco & Bettini, Albedo & Cereghetti, Nerio & Curto, Ivan & Caputo, Paola, 2019. "A method for mapping areas potentially suitable for district heating systems. An application to Canton Ticino (Switzerland)," Energy, Elsevier, vol. 189(C).
    5. Renaldi, R. & Kiprakis, A. & Friedrich, D., 2017. "An optimisation framework for thermal energy storage integration in a residential heat pump heating system," Applied Energy, Elsevier, vol. 186(P3), pages 520-529.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Launay, S. & Kadoch, B. & Le Métayer, O. & Parrado, C., 2019. "Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs," Energy, Elsevier, vol. 171(C), pages 419-434.
    2. Feng Dong & Yuling Pan, 2020. "Evolution of Renewable Energy in BRI Countries: A Combined Econometric and Decomposition Approach," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    3. Pasquali, Andrea & Klinge Jacobsen, Henrik, 2019. "Construction of energy savings cost curves: An application for Denmark," MPRA Paper 93076, University Library of Munich, Germany.
    4. Zhang, Yin & Qian, Tong & Tang, Wenhu, 2022. "Buildings-to-distribution-network integration considering power transformer loading capability and distribution network reconfiguration," Energy, Elsevier, vol. 244(PB).
    5. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    6. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions -- A Simulation-Based Case Study of a Single-Family House in Algeria and Germany," Papers 1904.11496, arXiv.org.
    7. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Verschelde, Tars & D'haeseleer, William, 2021. "Methodology for a global sensitivity analysis with machine learning on an energy system planning model in the context of thermal networks," Energy, Elsevier, vol. 232(C).
    9. Tori, Felipe & Bustamante, Waldo & Vera, Sergio, 2022. "Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries," Energy Policy, Elsevier, vol. 161(C).
    10. Khanna, Tarun M., 2022. "Using agricultural demand for reducing costs of renewable energy integration in India," Energy, Elsevier, vol. 254(PC).
    11. Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
    12. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
    13. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    14. Minyoung Kwon & Erwin Mlecnik & Vincent Gruis, 2021. "Business Model Development for Temporary Home Renovation Consultancy Centres: Experiences from European Pop-Ups," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    15. Georges, Emeline & Cornélusse, Bertrand & Ernst, Damien & Lemort, Vincent & Mathieu, Sébastien, 2017. "Residential heat pump as flexible load for direct control service with parametrized duration and rebound effect," Applied Energy, Elsevier, vol. 187(C), pages 140-153.
    16. Quitoras, Marvin Rhey & Campana, Pietro Elia & Rowley, Paul & Crawford, Curran, 2020. "Remote community integrated energy system optimization including building enclosure improvements and quantitative energy trilemma metrics," Applied Energy, Elsevier, vol. 267(C).
    17. Nielsen, Steffen & Østergaard, Poul Alberg & Sperling, Karl, 2023. "Renewable energy transition, transmission system impacts and regional development – a mismatch between national planning and local development," Energy, Elsevier, vol. 278(PA).
    18. Mathilde Fajardy & David Reiner, 2020. "An overview of the electrification of residential and commercial heating and cooling and prospects for decarbonisation," Working Papers EPGR2037, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    19. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Zihao Li & Daniel Friedrich & Gareth P. Harrison, 2020. "Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model," Energies, MDPI, vol. 13(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12303-:d:927263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.