IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p11961-d921904.html
   My bibliography  Save this article

How to Decouple Tourism Growth from Carbon Emissions? A Spatial Correlation Network Analysis in China

Author

Listed:
  • Zhaoming Deng

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    State Key Laboratory of Resources and Environmental Information System, Chinese Academy of Sciences, Beijing 100101, China)

  • Meijing Zhou

    (Beijing Institute of Petrochemical Technology, Beijing 102617, China
    Beijing Academy of Safety Engineering and Technology, Beijing 102617, China)

  • Qiong Xu

    (Business School, Central South University, Changsha 410083, China)

Abstract

This research aims to analyze the spatial correlation network of the decoupling between tourism growth and carbon emissions in China’s 31 provinces to promote the overall decoupling through regional cooperation. This study scientifically measures the decoupling index from 2009 to 2019 based on a “bottom-up” method and the Tapio decoupling model. It analyzes the spatial correlation network of the decoupling and its driving factors by using social network analysis. The conclusions show that the decoupling between China’s tourism economic growth and carbon emissions was dominated by an expansive connection, which indicates a nonideal decoupling state. Among the regions, decoupling was stronger in the eastern provinces and weaker in the middle and western districts. The spatial correlation outside the plates was more significant, while the internal correlation was weaker. Beijing and Shanghai were in the center of the network, and the eastern developed provinces were in the subcentral place, both of which had more muscular control over the network. In contrast, the middle and western regions were on edge positions, playing passive roles in the network. In addition, the economic development level was the most vital driving force behind the spatial correlation, followed by spatial adjacency and government policy. In contrast, the industrial structure and technological level were negative influencing factors. These research findings indicate potential interprovincial cooperation in terms of tourism decarbonization, which provide a profound reference for the whole sustainable development of China’s tourism industry.

Suggested Citation

  • Zhaoming Deng & Meijing Zhou & Qiong Xu, 2022. "How to Decouple Tourism Growth from Carbon Emissions? A Spatial Correlation Network Analysis in China," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11961-:d:921904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/11961/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/11961/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gössling, Stefan & Peeters, Paul & Ceron, Jean-Paul & Dubois, Ghislain & Patterson, Trista & Richardson, Robert B., 2005. "The eco-efficiency of tourism," Ecological Economics, Elsevier, vol. 54(4), pages 417-434, September.
    2. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 522-528, June.
    3. Gossling, Stefan & Hansson, Carina Borgstrom & Horstmeier, Oliver & Saggel, Stefan, 2002. "Ecological footprint analysis as a tool to assess tourism sustainability," Ecological Economics, Elsevier, vol. 43(2-3), pages 199-211, December.
    4. Becken, Susanne & Frampton, Chris & Simmons, David, 2001. "Energy consumption patterns in the accommodation sector--the New Zealand case," Ecological Economics, Elsevier, vol. 39(3), pages 371-386, December.
    5. Yue Pan & Gangmin Weng & Conghui Li & Jianpu Li, 2021. "Coupling Coordination and Influencing Factors among Tourism Carbon Emission, Tourism Economic and Tourism Innovation," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    6. Lizhi Xu & Shouyang Wang & Jingjing Li & Ling Tang & Yanmin Shao, 2019. "Modelling international tourism flows to China: A panel data analysis with the gravity model," Tourism Economics, , vol. 25(7), pages 1047-1069, November.
    7. Zhang, Zhongxiang, 2000. "Decoupling China's Carbon Emissions Increase from Economic Growth: An Economic Analysis and Policy Implications," World Development, Elsevier, vol. 28(4), pages 739-752, April.
    8. Lian Xue & Mohammad Haseeb & Haider Mahmood & Tarek Tawfik Yousef Alkhateeb & Muntasir Murshed, 2021. "Renewable Energy Use and Ecological Footprints Mitigation: Evidence from Selected South Asian Economies," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    9. Ali, Qamar & Yaseen, Muhammad Rizwan & Anwar, Sofia & Makhdum, Muhammad Sohail Amjad & Khan, Muhammad Tariq Iqbal, 2021. "The impact of tourism, renewable energy, and economic growth on ecological footprint and natural resources: A panel data analysis," Resources Policy, Elsevier, vol. 74(C).
    10. Konan, Denise Eby & Chan, Hing Ling, 2010. "Greenhouse gas emissions in Hawai[modifier letter turned comma]i: Household and visitor expenditure analysis," Energy Economics, Elsevier, vol. 32(1), pages 210-219, January.
    11. Yin, Ping & Lin, Zhibin & Prideaux, Bruce, 2019. "The impact of high-speed railway on tourism spatial structures between two adjoining metropolitan cities in China: Beijing and Tianjin," Journal of Transport Geography, Elsevier, vol. 80(C).
    12. Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
    13. Carlsson-Kanyama, Annika & Linden, Anna-Lisa, 1999. "Travel patterns and environmental effects now and in the future:: implications of differences in energy consumption among socio-economic groups," Ecological Economics, Elsevier, vol. 30(3), pages 405-417, September.
    14. Xiaohua Qin & Xingming Li, 2021. "Evaluate on the Decoupling of Tourism Economic Development and Ecological-Environmental Stress in China," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Larry Dwyer, 2023. "Tourism Degrowth: Painful but Necessary," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    2. Liguo Wang & Guodong Jia, 2023. "Spatial Spillover and Threshold Effects of High-Quality Tourism Development on Carbon Emission Efficiency of Tourism under the “Double Carbon” Target: Case Study of Jiangxi, China," Sustainability, MDPI, vol. 15(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaogao An & Polat Muhtar & Zhenquan Xiao, 2022. "Spatiotemporal Evolution of Tourism Eco-Efficiency in Major Tourist Cities in China," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    2. Wei Zhang & Ying Zhan & Ruiyang Yin & Xunbo Yuan, 2022. "The Tourism Eco-Efficiency Measurement and Its Influencing Factors in the Yellow River Basin," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
    3. Fabio Iraldo & Benedetta Nucci, 2016. "Proactive environmental management in hotels: What difference does it make?," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2016(2), pages 81-106.
    4. Bing Xia & Suocheng Dong & Zehong Li & Minyan Zhao & Dongqi Sun & Wenbiao Zhang & Yu Li, 2022. "Eco-Efficiency and Its Drivers in Tourism Sectors with Respect to Carbon Emissions from the Supply Chain: An Integrated EEIO and DEA Approach," IJERPH, MDPI, vol. 19(11), pages 1-26, June.
    5. Lingling Chen & Lin Yi & Rongrong Cai & Hui Yang, 2022. "Spatiotemporal Characteristics of the Correlation among Tourism, CO 2 Emissions, and Economic Growth in China," Sustainability, MDPI, vol. 14(14), pages 1-31, July.
    6. Aviral Kumar Tiwari & Ilhan Ozturk & M. Aruna, 2013. "Tourism, Energy Consumption and Climate Change in OECD Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 3(3), pages 247-261.
    7. Rui Wang & Bing Xia & Suocheng Dong & Yu Li & Zehong Li & Duoxun Ba & Wenbiao Zhang, 2020. "Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    8. Lingling Chen & Brijesh Thapa & Wei Yan, 2018. "The Relationship between Tourism, Carbon Dioxide Emissions, and Economic Growth in the Yangtze River Delta, China," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
    9. Natalia Porto & Matías Ciaschi, 2021. "Reformulating the tourism-extended environmental Kuznets curve: A quantile regression analysis under environmental legal conditions," Tourism Economics, , vol. 27(5), pages 991-1014, August.
    10. Tsai, Kang-Ting & Lin, Tzu-Ping & Hwang, Ruey-Lung & Huang, Yu-Jing, 2014. "Carbon dioxide emissions generated by energy consumption of hotels and homestay facilities in Taiwan," Tourism Management, Elsevier, vol. 42(C), pages 13-21.
    11. Xueru Pang & Yuquan Zhou & Yiting Zhu & Chunshan Zhou, 2023. "Exploring the Coordination and Spatial–Temporal Characteristics of the Tourism–Economy–Environment Development in the Pearl River Delta Urban Agglomeration, China," IJERPH, MDPI, vol. 20(3), pages 1-24, January.
    12. Sun, Ya-Yen & Cadarso, Maria Angeles & Driml, Sally, 2020. "Tourism carbon footprint inventories: A review of the environmentally extended input-output approach," Annals of Tourism Research, Elsevier, vol. 82(C).
    13. Becken, S. & Simmons, D., 2008. "Using the concept of yield to assess the sustainability of different tourist types," Ecological Economics, Elsevier, vol. 67(3), pages 420-429, October.
    14. Duoxun Ba & Jing Zhang & Suocheng Dong & Bing Xia & Lin Mu, 2022. "Spatial-Temporal Characteristics and Driving Factors of the Eco-Efficiency of Tourist Hotels in China," IJERPH, MDPI, vol. 19(18), pages 1-24, September.
    15. Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    16. Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
    17. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    18. Gössling, Stefan & Peeters, Paul & Ceron, Jean-Paul & Dubois, Ghislain & Patterson, Trista & Richardson, Robert B., 2005. "The eco-efficiency of tourism," Ecological Economics, Elsevier, vol. 54(4), pages 417-434, September.
    19. Chengcai Tang & Ziwei Wan & Pin Ng & Xiangyi Dai & Qiuxiang Sheng & Da Chen, 2019. "Temporal and Spatial Evolution of Carbon Emissions and Their Influencing Factors for Tourist Attractions at Heritage Tourist Destinations," Sustainability, MDPI, vol. 11(21), pages 1-19, October.
    20. Katircioglu, Salih Turan & Feridun, Mete & Kilinc, Ceyhun, 2014. "Estimating tourism-induced energy consumption and CO2 emissions: The case of Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 634-640.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11961-:d:921904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.