IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11397-d912202.html
   My bibliography  Save this article

Spatial Pattern Reconstruction of Water and Land Resources in Coal Mining Subsidence Areas within Urban Regions

Author

Listed:
  • Xiaojun Zhu

    (Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, China
    Huaibei Bureau of Natural Resources and Planning, Huaibei 235000, China)

  • Feng Zha

    (Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, China)

  • Hua Cheng

    (Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, China)

  • Liugen Zheng

    (Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, China)

  • Hui Liu

    (Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, China)

  • Wenshan Huang

    (Huaibei Bureau of Natural Resources and Planning, Huaibei 235000, China)

  • Yu Yan

    (Huaibei Bureau of Natural Resources and Planning, Huaibei 235000, China)

  • Liangjun Dai

    (Anhui Construction Engineering Group Corporation Limited, Hefei 230031, China)

  • Shenzhu Fang

    (Anhui Construction Engineering Group Corporation Limited, Hefei 230031, China)

  • Xiaoyu Yang

    (Department of Engineering Management, Hefei College of Finance and Economics, Hefei 231299, China)

Abstract

Water and land resources are important material bases of economic and social development, and their spatial patterns determine the pattern of the urban development. The development and expansion of coal-resource-based cities have introduced new societal problems, such as the overlapping of new city construction areas and underground coal resources. Underground coal mining also leads to surface subsidence, which destroys water and land resources and seriously affects the sustainable development of coal-resource-based cities. The surface subsidence area takes a long time to stabilize, and may form a large waterlogging area due to the high groundwater level, thereby increasing the difficulty of reconstructing mining subsidence areas. In this context, a scientific and complete method for reconstructing the spatial pattern of water and land resources in unstable coal mining subsidence areas within urban is proposed in this paper. This method initially predicts the surface subsidence value and then divides the subsidence area within the urban region into the waterlogging area and the non-waterlogging area according to the surface subsidence value. The waterlogging area will be renovated into a landscape lake district in the city by a series of transformation measures. Afterwards, goaf rock mass activation and surface stability evaluation analyses are performed in the non-waterlogging area. According to the evaluation results, land resources can be divided into unaffected, restricted and prohibited building areas, with each area being transformed differently. The Lv Jin Lake in Huaibei is selected as a case study, and the proposed method is applied to reconstruct its water and land resources. The original spatial pattern of the large-scale waterlogging area and abandoned land due to mining subsidence in urban areas is then reconstructed into a spatial pattern that integrates the urban landscape, scenario living and eco-tourism. Compared with traditional subsidence area management, the proposed method greatly increases the utilization value of water and land resources, improves the urban ecological environment, enhances the urban quality and effectively alleviates the problems of land shortage and human–land conflict in coal-resource-based cities.

Suggested Citation

  • Xiaojun Zhu & Feng Zha & Hua Cheng & Liugen Zheng & Hui Liu & Wenshan Huang & Yu Yan & Liangjun Dai & Shenzhu Fang & Xiaoyu Yang, 2022. "Spatial Pattern Reconstruction of Water and Land Resources in Coal Mining Subsidence Areas within Urban Regions," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11397-:d:912202
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengzheng Xie & Nong Zhang & Yuxin Yuan & Guang Xu & Qun Wei, 2019. "Study on Safety Control of Composite Roof in Deep Roadway Based on Energy Balance Theory," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    2. Wu, Jing & Bai, Zhongke, 2022. "Spatial and temporal changes of the ecological footprint of China's resource-based cities in the process of urbanization," Resources Policy, Elsevier, vol. 75(C).
    3. Jing Guan & Peng Yu, 2021. "Does Coal Mining Have Effects on Land Use Changes in a Coal Resource-Based City? Evidence from Huaibei City on the North China Plain," IJERPH, MDPI, vol. 18(21), pages 1-14, November.
    4. Li, Gensheng & Hu, Zhenqi & Li, Pengyu & Yuan, Dongzhu & Wang, Wenjuan & Han, Jiazheng & Yang, Kun, 2022. "Optimal layout of underground coal mining with ground development or protection: A case study of Jining, China," Resources Policy, Elsevier, vol. 76(C).
    5. Deyu Qian & Nong Zhang & Dongjiang Pan & Zhengzheng Xie & Hideki Shimada & Yang Wang & Chenghao Zhang & Nianchao Zhang, 2017. "Stability of Deep Underground Openings through Large Fault Zones in Argillaceous Rock," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    6. Zhenqi Hu & Linghua Duo & Fang Shao, 2018. "Optimal Thickness of Soil Cover for Reclaiming Subsided Land with Yellow River Sediments," Sustainability, MDPI, vol. 10(11), pages 1-12, October.
    7. Jiu Huang & Chuyuan Tian & Longfei Xing & Zhengfu Bian & Xiexing Miao, 2017. "Green and Sustainable Mining: Underground Coal Mine Fully Mechanized Solid Dense Stowing-Mining Method," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    8. Xin Janet Ge & Xiaoxia Liu, 2021. "Urban Land Use Efficiency under Resource-Based Economic Transformation—A Case Study of Shanxi Province," Land, MDPI, vol. 10(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoxue Gai & Ying Xu & Guoming Du, 2023. "Spatio-Temporal Differentiation and Driving Factors of Carbon Storage in Cultivated Land-Use Transition," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    2. Marat M. Khayrutdinov & Vladimir I. Golik & Alexander V. Aleksakhin & Ekaterina V. Trushina & Natalia V. Lazareva & Yulia V. Aleksakhina, 2022. "Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining," Resources, MDPI, vol. 11(10), pages 1-16, September.
    3. Tuan Nguyen Tran, 2023. "A comparative study of urban land use efficiency of the cities of Hai Phong and Can Tho, Vietnam," Environmental & Socio-economic Studies, Sciendo, vol. 11(3), pages 43-53, September.
    4. Deyu Qian & Nong Zhang & Dongjiang Pan & Zhengzheng Xie & Hideki Shimada & Yang Wang & Chenghao Zhang & Nianchao Zhang, 2017. "Stability of Deep Underground Openings through Large Fault Zones in Argillaceous Rock," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    5. Bo Li & Jing Liu & Qian Liu & Muhammad Mohiuddin, 2022. "The Effects of Broadband Infrastructure on Carbon Emission Efficiency of Resource-Based Cities in China: A Quasi-Natural Experiment from the “Broadband China” Pilot Policy," IJERPH, MDPI, vol. 19(11), pages 1-27, May.
    6. Jiangsu Li & Weihua Li & Bo Li & Liangrong Duan & Tianjiao Zhang & Qi Jia, 2022. "Construction Land Expansion of Resource-Based Cities in China: Spatiotemporal Characteristics and Driving Factors," IJERPH, MDPI, vol. 19(23), pages 1-20, December.
    7. Zhiyi Zhang & Hideki Shimada & Takashi Sasaoka & Akihiro Hamanaka, 2017. "Stability Control of Retained Goaf-Side Gateroad under Different Roof Conditions in Deep Underground Y Type Longwall Mining," Sustainability, MDPI, vol. 9(10), pages 1-19, September.
    8. Yedong Chen & Jiang Chang & Zixuan Li & Li Ming & Cankun Li & Cheng Li, 2023. "Coupling Coordination and Spatiotemporal Analysis of Urban Compactness and Land-Use Efficiency in Resource-Based Areas: A Case Study of Shanxi Province, China," Land, MDPI, vol. 12(9), pages 1-23, August.
    9. Hu, Zhenqi & Li, Gensheng & Xia, Jianan & Feng, Zhanjie & Han, Jiazheng & Chen, Zanxu & Wang, Wenjuan & Li, Guodong, 2023. "Coupling of underground coal mining and mine reclamation for farmland protection and sustainable mining," Resources Policy, Elsevier, vol. 84(C).
    10. Yangyang Wang & Yanjun Liu & Guolei Zhou & Zuopeng Ma & Hongri Sun & Hui Fu, 2022. "Coordinated Relationship between Compactness and Land-Use Efficiency in Shrinking Cities: A Case Study of Northeast China," Land, MDPI, vol. 11(3), pages 1-19, March.
    11. Zhengzheng Xie & Nong Zhang & Deyu Qian & Changliang Han & Yanpei An & Yang Wang, 2018. "Rapid Excavation and Stability Control of Deep Roadways for an Underground Coal Mine with High Production in Inner Mongolia," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    12. Wenbing Guo & Mingjie Guo & Yi Tan & Erhu Bai & Gaobo Zhao, 2019. "Sustainable Development of Resources and the Environment: Mining-Induced Eco-Geological Environmental Damage and Mitigation Measures—A Case Study in the Henan Coal Mining Area, China," Sustainability, MDPI, vol. 11(16), pages 1-34, August.
    13. Jiu Huang & Peng Wang & Chaorong Xu & Zhuangzhuang Zhu, 2018. "Fly Ash Modified Coalmine Solid Wastes for Stabilization of Trace Metals in Mining Damaged Land Reclamation: A Case Study in Xuzhou Coalmine Area," IJERPH, MDPI, vol. 15(10), pages 1-23, October.
    14. Honglei Liu & Qiang Wu & Jianxin Chen & Mingjun Wang & Di Zhao & Cheng Duan, 2021. "Environmental Impacts Related to Closed Mines in Inner Mongolia," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    15. Zixuan Li & Jiang Chang & Cheng Li & Sihao Gu, 2023. "Ecological Restoration and Protection of National Land Space in Coal Resource-Based Cities from the Perspective of Ecological Security Pattern: A Case Study in Huaibei City, China," Land, MDPI, vol. 12(2), pages 1-27, February.
    16. Zhaowen Du & Shaojie Chen & Junbiao Ma & Zhongping Guo & Dawei Yin, 2020. "Gob-Side Entry Retaining Involving Bag Filling Material for Support Wall Construction," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    17. Risheng Qiao & Weike Chen & Yongsheng Qiao, 2022. "Sustainable Development Path of Resource-Based Cities—Taking Datong as an Example," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    18. Shuai Li & Lifeng Yu & Wanjun Jiang & Haoxuan Yu & Xinmin Wang, 2022. "The Recent Progress China Has Made in Green Mine Construction, Part I: Mining Groundwater Pollution and Sustainable Mining," IJERPH, MDPI, vol. 19(9), pages 1-19, May.
    19. Rongtian Zhang & Jianfei Lu, 2022. "Spatial–Temporal Pattern and Convergence Characteristics of Provincial Urban Land Use Efficiency under Environmental Constraints in China," IJERPH, MDPI, vol. 19(17), pages 1-15, August.
    20. Yao Lu & Ning Jiang & Wei Lu & Meng Zhang & Dezhi Kong & Mengtang Xu & Changxiang Wang, 2022. "Experimental Study on Deformation Characteristics of Gangue Backfill Zone under the Condition of Natural Water in Deep Mines," Sustainability, MDPI, vol. 14(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11397-:d:912202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.