IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9272-d874493.html
   My bibliography  Save this article

Primary Growth Effect of Salix viminalis L. CV. Inger and Tordis in Controlled Conditions by Exploring Optimum Cutting Lengths and Rhizogenesis Treatments

Author

Listed:
  • Sorin Daniel Vâtcă

    (Department of Plant Physiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania)

  • Ștefania Gâdea

    (Department of Plant Physiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
    These authors contributed equally to this work.)

  • Roxana Vidican

    (Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania)

  • Mignon Șandor

    (Department of Ecology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
    These authors contributed equally to this work.)

  • Vlad Stoian

    (Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania)

  • Anamaria Vâtcă

    (Department of Management and Economics, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania)

  • Adrian Horvath

    (Department of Environmental Engineering, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania)

  • Valentina Ancuța Stoian

    (Department of Plant Physiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
    These authors contributed equally to this work.)

Abstract

The major disadvantage of setting up a willow coppice is the low survival rate, which reduces economic efficiency and crop sustainability. The aim of this research was to test, under controlled conditions, the impact of water, gibberellic acid A3 (0.05%), and humic acid (0.2%) on the growth and development of two willow clones. Under humic acid treatment, 20 cm cuttings of the Tordis clone developed up to 15 roots, and 25 cm cuttings developed more than 23. In comparison, water stimulated more than 15 roots for both 20 and 25 cm cuttings. Gibberellins acted as an inhibitor, especially on the roots, and the cuttings dried out from the top to the middle, with weak development of shoots and callus formation. For both clones, the highest number of active buds was observed on 20 and 25 cm cuttings grown in water, with more than four for Inger and more than seven for Tordis. Root development of the Inger clone had a maximum of eight for 25 cm cuttings grown in water; it was three times lower in the same variant of Tordis and two times lower for the Tordis clone with humic acid treatment. In general, Inger cuttings of 15 and 25 cm highlighted a delayed root formation when humic acids and gibberellins were applied. In controlled condition experiments, the Tordis clone was more suitable owing to its higher development and increased growth stability.

Suggested Citation

  • Sorin Daniel Vâtcă & Ștefania Gâdea & Roxana Vidican & Mignon Șandor & Vlad Stoian & Anamaria Vâtcă & Adrian Horvath & Valentina Ancuța Stoian, 2022. "Primary Growth Effect of Salix viminalis L. CV. Inger and Tordis in Controlled Conditions by Exploring Optimum Cutting Lengths and Rhizogenesis Treatments," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9272-:d:874493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mariusz Matyka & Paweł Radzikowski, 2020. "Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil," Agriculture, MDPI, vol. 10(12), pages 1-10, December.
    2. Daniel Liberacki & Joanna Kocięcka & Piotr Stachowski & Roman Rolbiecki & Stanisław Rolbiecki & Hicran A. Sadan & Anna Figas & Barbara Jagosz & Dorota Wichrowska & Wiesław Ptach & Piotr Prus & Ferenc , 2022. "Water Needs of Willow ( Salix L.) in Western Poland," Energies, MDPI, vol. 15(2), pages 1-19, January.
    3. Ionica Oncioiu & Anca Gabriela Petrescu & Eugenia Grecu & Marius Petrescu, 2017. "Optimizing the Renewable Energy Potential: Myth or Future Trend in Romania," Energies, MDPI, vol. 10(6), pages 1-14, May.
    4. Long, A. & Bose, A. & O'Shea, R. & Monaghan, R. & Murphy, J.D., 2021. "Implications of European Union recast Renewable Energy Directive sustainability criteria for renewable heat and transport: Case study of willow biomethane in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    6. Jakub Jan Zięty & Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzykowski & Michał Krzyżaniak, 2022. "Legal Framework for the Sustainable Production of Short Rotation Coppice Biomass for Bioeconomy and Bioenergy," Energies, MDPI, vol. 15(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewelina Olba-Zięty & Jakub Jan Zięty & Mariusz Jerzy Stolarski, 2023. "External Environmental Costs of Solid Biomass Production against the Legal and Political Background in Europe," Energies, MDPI, vol. 16(10), pages 1-27, May.
    2. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    3. Paweł Stachowicz & Mariusz Jerzy Stolarski, 2022. "Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass," Energies, MDPI, vol. 16(1), pages 1-16, December.
    4. Elżbieta M. Zębek & Jakub J. Zięty, 2022. "Effect of Landfill Arson to a “Lax” System in a Circular Economy under the Current EU Energy Policy: Perspective Review in Waste Management Law," Energies, MDPI, vol. 15(22), pages 1-25, November.
    5. Samanta, Samiran & Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Techno-economic analysis of a fuel-cell driven integrated energy hub for decarbonising transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Consolación Quintana-Rojo & Fernando-Evaristo Callejas-Albiñana & Miguel-Ángel Tarancón & Isabel Martínez-Rodríguez, 2020. "Econometric Studies on the Development of Renewable Energy Sources to Support the European Union 2020–2030 Climate and Energy Framework: A Critical Appraisal," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    7. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    8. Małgorzata Kozak & Rafał Pudełko, 2021. "Impact Assessment of the Long-Term Fallowed Land on Agricultural Soils and the Possibility of Their Return to Agriculture," Agriculture, MDPI, vol. 11(2), pages 1-16, February.
    9. Igliński, Bartłomiej & Pietrzak, Michał Bernard & Kiełkowska, Urszula & Skrzatek, Mateusz & Kumar, Gopalakrishnan & Piechota, Grzegorz, 2022. "The assessment of renewable energy in Poland on the background of the world renewable energy sector," Energy, Elsevier, vol. 261(PB).
    10. Jakub Stolarski & Sławomir Wierzbicki & Szymon Nitkiewicz & Mariusz Jerzy Stolarski, 2023. "Wood Chip Production Efficiency Depending on Chipper Type," Energies, MDPI, vol. 16(13), pages 1-15, June.
    11. Teresa Pakulska, 2021. "Green Energy in Central and Eastern European (CEE) Countries: New Challenges on the Path to Sustainable Development," Energies, MDPI, vol. 14(4), pages 1-19, February.
    12. Roman Rolbiecki & Ali Yücel & Joanna Kocięcka & Atılgan Atilgan & Monika Marković & Daniel Liberacki, 2022. "Analysis of SPI as a Drought Indicator during the Maize Growing Period in the Çukurova Region (Turkey)," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    13. Mariusz Jerzy Stolarski, 2021. "Industrial and Bioenergy Crops for Bioeconomy Development," Agriculture, MDPI, vol. 11(9), pages 1-5, September.
    14. Dariusz Kurz & Damian Głuchy & Michał Filipiak & Dawid Ostrowski, 2023. "Technical and Economic Analysis of the Use of Electricity Generated by a BIPV System for an Educational Establishment in Poland," Energies, MDPI, vol. 16(18), pages 1-23, September.
    15. Sabina Kordana-Obuch & Mariusz Starzec, 2022. "Horizontal Shower Heat Exchanger as an Effective Domestic Hot Water Heating Alternative," Energies, MDPI, vol. 15(13), pages 1-22, July.
    16. Kwon Sook Park & Mi Jeong Kim, 2017. "Energy Demand Reduction in the Residential Building Sector: A Case Study of Korea," Energies, MDPI, vol. 10(10), pages 1-11, September.
    17. Madeleine McPherson & Theofilos Sotiropoulos-Michalakakos & LD Danny Harvey & Bryan Karney, 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset," Energies, MDPI, vol. 10(7), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9272-:d:874493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.