IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7533-d843742.html
   My bibliography  Save this article

Environmental and Economic Life-Cycle Assessments of Household Food Waste Management Systems: A Comparative Review of Methodology and Research Progress

Author

Listed:
  • Na Yang

    (Shenzhen Academy of Environmental Sciences, 50 Honggui Road, Shenzhen 518001, China
    Guangdong Environmental Protection Sewage High Quality Utilization Engineering Technology R&D Center, Shenzhen 518001, China)

  • Fangling Li

    (Shenzhen Academy of Environmental Sciences, 50 Honggui Road, Shenzhen 518001, China
    Guangdong Environmental Protection Sewage High Quality Utilization Engineering Technology R&D Center, Shenzhen 518001, China)

  • Yang Liu

    (Shenzhen Academy of Environmental Sciences, 50 Honggui Road, Shenzhen 518001, China
    Guangdong Environmental Protection Sewage High Quality Utilization Engineering Technology R&D Center, Shenzhen 518001, China)

  • Tao Dai

    (Shenzhen Academy of Environmental Sciences, 50 Honggui Road, Shenzhen 518001, China)

  • Qiao Wang

    (Shenzhen Academy of Environmental Sciences, 50 Honggui Road, Shenzhen 518001, China)

  • Jiebao Zhang

    (Shenzhen Municipal Solid Waste Sorting Management Service Center, Shenzhen 518001, China)

  • Zhiguang Dai

    (Shenzhen Academy of Environmental Sciences, 50 Honggui Road, Shenzhen 518001, China)

  • Boping Yu

    (Shenzhen Academy of Environmental Sciences, 50 Honggui Road, Shenzhen 518001, China
    Guangdong Environmental Protection Sewage High Quality Utilization Engineering Technology R&D Center, Shenzhen 518001, China)

Abstract

Household food waste (HFW) is the main component of municipal solid waste (MSW). Appropriate HFW management strategies could reduce the environmental burdens and economic costs to society. Life-cycle thinking is an effective decision-making tool for MSW management. This paper compares the three main environmental and economic assessment methodologies, i.e., societal life-cycle costing (societal LCC), environmental cost-effectiveness (ECE) analysis, and multicriteria analysis (MCA) in terms of the definitions, method frameworks, and their advantages/disadvantages. Most reviewed studies applied the environmental life-cycle costing (ELCC) method, a simplified ECE, which does not involve interactive quantitative comparisons between environmental and economic benefits. Further attention should be paid to the coordination between life-cycle assessment (LCA) and life-cycle costing (LCC), the monetization coefficient in external cost calculation of societal LCC, and the standardization and evaluation approaches of ECE. HFW prevention is rarely considered in the reviewed literature but was demonstrated as the best route over treatment or utilization. Anaerobic digestion is environmentally preferable to composting and landfilling; it is comparable to biodiesel production, feeding conversation, and incineration. From the perspective of economic costs (including societal LCC), the ranking of treatment technologies varied a lot from one study to another, attributable to the diverse evaluation methods and different data sources. To improve the environmental and economic assessment approaches to HFW management, an inventory database (e.g., food waste properties, technical treatment parameters, material flow, and fund flow data) suitable for HFW should be constructed. When establishing the system boundaries, the processes of source sorting, collection and transportation, and by-product handling should be coherent with the investigated treatment technology.

Suggested Citation

  • Na Yang & Fangling Li & Yang Liu & Tao Dai & Qiao Wang & Jiebao Zhang & Zhiguang Dai & Boping Yu, 2022. "Environmental and Economic Life-Cycle Assessments of Household Food Waste Management Systems: A Comparative Review of Methodology and Research Progress," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7533-:d:843742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Woon, Kok Sin & Lo, Irene M.C., 2016. "An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 104-114.
    2. Stefanie Hellweg & Gabor Doka & Göran Finnveden & Konrad Hungerbühler, 2005. "Assessing the Eco‐efficiency of End‐of‐Pipe Technologies with the Environmental Cost Efficiency Indicator," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 189-203, October.
    3. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    4. Atabaki, Mohammad Saeid & Aryanpur, Vahid, 2018. "Multi-objective optimization for sustainable development of the power sector: An economic, environmental, and social analysis of Iran," Energy, Elsevier, vol. 161(C), pages 493-507.
    5. Gomes, Carlos F. Simões & Nunes, Kátia R.A. & Helena Xavier, Lucia & Cardoso, Rosangela & Valle, Rogerio, 2008. "Multicriteria decision making applied to waste recycling in Brazil," Omega, Elsevier, vol. 36(3), pages 395-404, June.
    6. Nick Hanley, 2001. "Cost — Benefit Analysis and Environmental Policymaking," Environment and Planning C, , vol. 19(1), pages 103-118, February.
    7. Dong, Jun & Chi, Yong & Zou, Daoan & Fu, Chao & Huang, Qunxing & Ni, Mingjiang, 2014. "Energy–environment–economy assessment of waste management systems from a life cycle perspective: Model development and case study," Applied Energy, Elsevier, vol. 114(C), pages 400-408.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamíris Pacheco da Costa & James Gillespie & Katarzyna Pelc & Abi Adefisan & Michael Adefisan & Ramakrishnan Ramanathan & Fionnuala Murphy, 2022. "Life Cycle Assessment Tool for Food Supply Chain Environmental Evaluation," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    2. Aniruddha Sarker & Mithun Kumar Ghosh & Tofazzal Islam & Muhammad Bilal & Rakhi Nandi & Md Lamiur Raihan & Mohammad Nabil Hossain & Juwel Rana & Subrato Kumar Barman & Jang-Eok Kim, 2022. "Sustainable Food Waste Recycling for the Circular Economy in Developing Countries, with Special Reference to Bangladesh," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    3. Ali Shahbazi & Mazaher Moeinaddini & Mohammad Ali Abdoli & Mahnaz Hosseinzadeh & Neamatollah Jaafarzadeh & Rajib Sinha, 2023. "Environmental Damage of Different Waste Treatment Scenarios by Considering Avoided Emissions Based on System Dynamics Modeling," Sustainability, MDPI, vol. 15(23), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Christos Vlachokostas, 2020. "Closing the Loop Between Energy Production and Waste Management: A Conceptual Approach Towards Sustainable Development," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    4. Ieva Meidute-Kavaliauskiene & Vida Davidaviciene & Shahryar Ghorbani & Iman Ghasemian Sahebi, 2021. "Optimal Allocation of Gas Resources to Different Consumption Sectors Using Multi-Objective Goal Programming," Sustainability, MDPI, vol. 13(10), pages 1-19, May.
    5. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    6. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    7. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    8. Zhang, Tianyu & Dong, Peiwu & Zeng, Yongchao & Ju, Yanbing, 2022. "Analyzing the diffusion of competitive smart wearable devices: An agent-based multi-dimensional relative agreement model," Journal of Business Research, Elsevier, vol. 139(C), pages 90-105.
    9. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    10. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    12. Marileena Koskela & Jarmo Vehmas, 2012. "Defining Eco‐efficiency: A Case Study on the Finnish Forest Industry," Business Strategy and the Environment, Wiley Blackwell, vol. 21(8), pages 546-566, December.
    13. Nock, Destenie & Baker, Erin, 2019. "Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study," Applied Energy, Elsevier, vol. 242(C), pages 655-673.
    14. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    15. Woon, Kok Sin & Lo, Irene M.C., 2016. "An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 104-114.
    16. Di Leo, Senatro & Salvia, Monica, 2017. "Local strategies and action plans towards resource efficiency in South East Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 286-305.
    17. Porzio, Giacomo Filippo & Colla, Valentina & Fornai, Barbara & Vannucci, Marco & Larsson, Mikael & Stripple, Håkan, 2016. "Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap," Applied Energy, Elsevier, vol. 161(C), pages 656-672.
    18. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    19. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    20. Assadi, Mohammad Reza & Ataebi, Melikasadat & Ataebi, Elmira sadat & Hasani, Aliakbar, 2022. "Prioritization of renewable energy resources based on sustainable management approach using simultaneous evaluation of criteria and alternatives: A case study on Iran's electricity industry," Renewable Energy, Elsevier, vol. 181(C), pages 820-832.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7533-:d:843742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.