IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7460-d842122.html
   My bibliography  Save this article

Surface Seeding of Wheat: A Sustainable Way towards Climate Resilience Agriculture

Author

Listed:
  • Satish Kumar Singh

    (Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
    These authors contributed equally to this work.)

  • Abhik Patra

    (Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
    Krishi Vigyan Kendra, Narkatiaganj 845455, West Champaran, India
    These authors contributed equally to this work.)

  • Ramesh Chand

    (Department of Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India)

  • Hanuman Singh Jatav

    (Department of Soil Science and Agriculture Chemistry, Sri Karan Narendra Agriculture University-Jobner, Jobner 303329, Rajasthan, India)

  • Yang Luo

    (Empa, Swiss Federal Laboratories for Materials Science and Technology, ETH Domain, 8600 Dübendorf, Switzerland)

  • Vishnu D. Rajput

    (Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia)

  • Shafaque Sehar

    (Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China)

  • Sanjay Kumar Attar

    (Department of Horticulture, Sri Karan Narendra Agriculture University-Jobner, Jobner 303329, Rajasthan, India)

  • Mudasser Ahmed Khan

    (Department of Plant Pathology, Sri Karan Narendra Agriculture University-Jobner, Jobner 303329, Rajasthan, India)

  • Surendra Singh Jatav

    (Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India)

  • Tatiana Minkina

    (Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia)

  • Muhammad Faheem Adil

    (Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China)

Abstract

Conventional tillage (CT)-based agriculture is known to be ecologically indiscreet, economically and environmentally unsustainable, and leads to the degradation of soil and the environment in the Indo-Gangetic Plain (IGP). The surface seeding (SS) method was introduced to manage agro-ecosystems for sustaining productivity and increasing farmers’ profits, while sustaining the natural resources. Here, we conducted a systematic literature review on SS of wheat reported in the IGP, with the aim to cover the concept of SS, its impact on wheat yield, soil properties, and the environment, with the potential benefits and constraints. The major findings are: (i) an SS-based rice–wheat system improves productivity (∼10%) and profitability (20–30%),while employing a lesser amount of irrigation water (15–30%) and energy input (20–25%) compared to a conventional system; (ii) an SS-based system is more adaptive to extreme climatic conditions, reduces the carbon footprint, and increases crop production; (iii) an SS approach enhances soil health by virtue of increased soil organic carbon and improved soil aggregation, as well as soil, water, and energy conservation; (iv) SS consisting of no-tillage with substantial crop residue retention offers an alternative to crop residue burning. Strong policies/legislation are required to encourage SS of wheat, in order to limit residue burning, and provide farmers with carbon credits in exchange for carbon sequestration and reduced greenhouse gas emissions.

Suggested Citation

  • Satish Kumar Singh & Abhik Patra & Ramesh Chand & Hanuman Singh Jatav & Yang Luo & Vishnu D. Rajput & Shafaque Sehar & Sanjay Kumar Attar & Mudasser Ahmed Khan & Surendra Singh Jatav & Tatiana Minkina, 2022. "Surface Seeding of Wheat: A Sustainable Way towards Climate Resilience Agriculture," Sustainability, MDPI, vol. 14(12), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7460-:d:842122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tripathi, R.S. & Raju, R. & Thimmappa, K., 2013. "Impact of Zero Tillage on Economics of Wheat Production in Haryana," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 26(1), June.
    2. Qureshi, A. S. & Shah, T. & Akhtar, M, 2003. "The groundwater economy of Pakistan," IWMI Working Papers H033572, International Water Management Institute.
    3. Tek B. Sapkota & Vivek Shankar & Munmun Rai & Mangi L Jat & Clare M. Stirling & Love K. Singh & Hanuman S. Jat & Mohinder S. Grewal, 2017. "Reducing Global Warming Potential through Sustainable Intensification of Basmati Rice-Wheat Systems in India," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    4. Hobbs, P. R. & Gupta, R. K., 2003. "Rice wheat cropping systems in the Indo-Gangetic plains: issues of water productivity in relation to new resource conserving technologies," IWMI Books, Reports H032646, International Water Management Institute.
    5. Choudhary, Mahipal & Panday, S.C. & Meena, Vijay Singh & Singh, Sher & Yadav, R.P. & Pattanayak, Arunava & Mahanta, Dibakar & Bisht, Jaideep Kumar & Stanley, J., 2020. "Long-term tillage and irrigation management practices: Strategies to enhance crop and water productivity under rice-wheat rotation of Indian mid-Himalayan Region," Agricultural Water Management, Elsevier, vol. 232(C).
    6. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2020. "Energy and carbon footprints of wheat establishment following different rice residue management strategies vis-à-vis conventional tillage coupled with rice residue burning in north-western India," Energy, Elsevier, vol. 200(C).
    7. Kakraliya, S.K. & Jat, H.S. & Singh, Ishwar & Sapkota, Tek B. & Singh, Love K. & Sutaliya, Jhabar M. & Sharma, Parbodh C. & Jat, R.D. & Choudhary, Meena & Lopez-Ridaura, Santiago & Jat, M.L., 2018. "Performance of portfolios of climate smart agriculture practices in a rice-wheat system of western Indo-Gangetic plains," Agricultural Water Management, Elsevier, vol. 202(C), pages 122-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ridha Boudiar & Khalid S. Alshallash & Khadiga Alharbi & Salah A. Okasha & Mohammed Fenni & Abdelhamid Mekhlouf & Bilal Fortas & Keirieddine Hamsi & Kamel Nadjem & Abdennour Belagrouz & Elsayed Mansou, 2022. "Influence of Tillage and Cropping Systems on Soil Properties and Crop Performance under Semi-Arid Conditions," Sustainability, MDPI, vol. 14(18), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erenstein, Olaf & Malik, R.K. & Singh, Sher, 2007. "Adoption and Impacts of Zero-Tillage in the Rice-Wheat Zone of Irrigated Haryana, India," Impact Studies 56092, CIMMYT: International Maize and Wheat Improvement Center.
    2. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    3. Suresh K. Kakraliya & Hanuman S. Jat & Tek B. Sapkota & Ishwar Singh & Manish Kakraliya & Manoj K. Gora & Parbodh C. Sharma & Mangi L. Jat, 2021. "Effect of Climate-Smart Agriculture Practices on Climate Change Adaptation, Greenhouse Gas Mitigation and Economic Efficiency of Rice-Wheat System in India," Agriculture, MDPI, vol. 11(12), pages 1-20, December.
    4. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    5. Singh, Ranbir & Singh, Ajay & Sheoran, Parvender & Fagodiya, R.K. & Rai, Arvind Kumar & Chandra, Priyanka & Rani, Sonia & Yadav, Rajender Kumar & Sharma, P.C., 2022. "Energy efficiency and carbon footprints of rice-wheat system under long-term tillage and residue management practices in western Indo-Gangetic Plains in India," Energy, Elsevier, vol. 244(PA).
    6. A. S. Panwar & M. Shamim & Subhash Babu & N. Ravishankar & Ashisa Kumar Prusty & N. M. Alam & D. K. Singh & J. S. Bindhu & Jashanjot Kaur & L. N. Dashora & M. D. Latheef Pasha & Soumitra Chaterjee & M, 2018. "Enhancement in Productivity, Nutrients Use Efficiency, and Economics of Rice-Wheat Cropping Systems in India through Farmer’s Participatory Approach," Sustainability, MDPI, vol. 11(1), pages 1-26, December.
    7. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    8. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    9. Afreen Siddiqi & James L. Wescoat, 2013. "Energy use in large-scale irrigated agriculture in the Punjab province of Pakistan," Water International, Taylor & Francis Journals, vol. 38(5), pages 571-586, September.
    10. Asad Qureshi & Peter McCornick & A. Sarwar & Bharat Sharma, 2010. "Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1551-1569, June.
    11. Jeetendra Prakash Aryal & Dil Bahadur Rahut & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri, 2020. "Climate change mitigation options among farmers in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3267-3289, April.
    12. Mahipal Choudhary & Nishant K. Sinha & Monoranjan Mohanty & Somasundaram Jayaraman & Nikul Kumari & Bikram Jyoti & Ankur Srivastava & Jyoti K. Thakur & Nirmal Kumar & Pramod Jha & Dhiraj Kumar & Jiten, 2023. "Response of Contrasting Nutrient Management Regimes on Soil Aggregation, Aggregate-Associated Carbon and Macronutrients in a 43-Year Long-Term Experiment," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    13. Alauddin, Mohammad & Quiggin, John, 2008. "Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options," Ecological Economics, Elsevier, vol. 65(1), pages 111-124, March.
    14. Singh, Pritpal & Sandhu, Amarjeet Singh, 2023. "Energy budgeting and economics of potato (Solanum tuberosum L.) cultivation under different sowing methods in north-western India," Energy, Elsevier, vol. 269(C).
    15. Shahzad Ahmad & Zhang Caihong & E. M. B. P. Ekanayake, 2021. "Livelihood Improvement through Agroforestry Compared to Conventional Farming System: Evidence from Northern Irrigated Plain, Pakistan," Land, MDPI, vol. 10(6), pages 1-18, June.
    16. Pratap S. Birthal & Jaweriah Hazrana & Digvijay S. Negi, 2021. "Effectiveness of Farmers’ Risk Management Strategies in Smallholder Agriculture: Evidence from India," Climatic Change, Springer, vol. 169(3), pages 1-35, December.
    17. Mkoka Hamza Juma & Kallunde P. Sibuga & Newton L. Kilasi, 2023. "Farmer’s Knowledge on Weed Management, Soil Fertility and Moisture Conservation Practices on Rice Production, A Case Study of Mbarali District in Tanzania," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 9(2), pages 233-239, 04-2023.
    18. Singh, Pritpal & Singh, Gurdeep & Gupta, Alok & Sodhi, Gurjinder Pal Singh, 2023. "Data envelopment analysis based energy optimization for improving energy efficiency in wheat established following rice residue management in rice-wheat cropping system," Energy, Elsevier, vol. 284(C).
    19. Praveen Koovalamkadu Velayudhan & Alka Singh & Girish Kumar Jha & Pramod Kumar & Kingsly Immanuelraj Thanaraj & Aditya Korekallu Srinivasa, 2021. "What Drives the Use of Organic Fertilizers? Evidence from Rice Farmers in Indo-Gangetic Plains, India," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
    20. Erenstein, Olaf, 2009. "Comparing water management in rice-wheat production systems in Haryana, India and Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 96(12), pages 1799-1806, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7460-:d:842122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.