IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6362-d822064.html
   My bibliography  Save this article

Decision-Tree Based Methodology Aid in Assessing the Sustainable Development of a Manufacturing Company

Author

Listed:
  • Justyna Patalas-Maliszewska

    (Institute of Mechanical Engineering, University of Zielona Góra, 65-417 Zielona Góra, Poland)

  • Hanna Łosyk

    (Institute of Mechanical Engineering, University of Zielona Góra, 65-417 Zielona Góra, Poland)

  • Matthias Rehm

    (Professorship Production Systems and Processes, Chemnitz University of Technology, D-09107 Chemnitz, Germany)

Abstract

Nowadays, achieving the objectives of sustainable development (SD) within a manufacturing company, through introducing and integrating sustainability into a development strategy, is a key parameter in gaining a competitive advantage in the market. The objective of this study was to develop a decision-tree based methodology to facilitate SD assessment in a manufacturing company, which consists of five main components: (1) Determination of SD indicators based on literature analysis, (2) Using the Analytic Hierarchy Process (AHP) method which determines the priority of the SD criteria, (3) Collecting data to determine the values of the key objectives SD, (4) Using a decision tree to build scenarios of possible actions to increase the level of SD, (5) Indicating recommended actions for continuous monitoring of progress towards reaching SD objectives. In the proposed approach, the use of the AHP method allowed for indicating the most important SD indicators, which made it possible to limit the number of queries to manufacturers on data from real companies regarding the values of SD indicators. Finally, the methodology was applied and verified within a real manufacturing company in order to assist the Management Board in making projections about future actions regarding an increase in SD level.

Suggested Citation

  • Justyna Patalas-Maliszewska & Hanna Łosyk & Matthias Rehm, 2022. "Decision-Tree Based Methodology Aid in Assessing the Sustainable Development of a Manufacturing Company," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6362-:d:822064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vikas Swarnakar & Amit Raj Singh & Jiju Antony & Raja Jayaraman & Anil Kr Tiwari & Rajeev Rathi & Elizabeth Cudney, 2022. "Prioritizing Indicators for Sustainability Assessment in Manufacturing Process: An Integrated Approach," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    2. Justyna Patalas-Maliszewska & Hanna Łosyk, 2020. "An Approach to Assessing Sustainability in the Development of a Manufacturing Company," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    3. Ali Keyvanfar & M. Salim Ferwati & Arezou Shafaghat & Hasanuddin Lamit, 2018. "A Path Walkability Assessment Index Model for Evaluating and Facilitating Retail Walking Using Decision-Tree-Making (DTM) Method," Sustainability, MDPI, vol. 10(4), pages 1-33, March.
    4. Hail Jung & Jinsu Jeon & Dahui Choi & Jung-Ywn Park, 2021. "Application of Machine Learning Techniques in Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    5. Erol, Ismail & Sencer, Safiye & Sari, Ramazan, 2011. "A new fuzzy multi-criteria framework for measuring sustainability performance of a supply chain," Ecological Economics, Elsevier, vol. 70(6), pages 1088-1100, April.
    6. Małgorzata Jasiulewicz-Kaczmarek & Patryk Żywica & Arkadiusz Gola, 2021. "Fuzzy set theory driven maintenance sustainability performance assessment model: a multiple criteria approach," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1497-1515, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patalas-Maliszewska, Justyna & Łosyk, Hanna & Dix, Martin & Rehm, Matthias, 2025. "Predictive modelling for sustainable production enhancing: Study of metalworking Industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patalas-Maliszewska, Justyna & Łosyk, Hanna & Dix, Martin & Rehm, Matthias, 2025. "Predictive modelling for sustainable production enhancing: Study of metalworking Industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    2. Hörisch, Jacob & Ortas, Eduardo & Schaltegger, Stefan & Álvarez, Igor, 2015. "Environmental effects of sustainability management tools: An empirical analysis of large companies," Ecological Economics, Elsevier, vol. 120(C), pages 241-249.
    3. Asghari, M. & Afshari, H. & Jaber, M.Y. & Searcy, C., 2023. "Credibility-based cascading approach to achieve net-zero emissions in energy symbiosis networks using an Organic Rankine Cycle," Applied Energy, Elsevier, vol. 340(C).
    4. Cinzia Colapinto & Raja Jayaraman & Fouad Ben Abdelaziz & Davide La Torre, 2020. "Environmental sustainability and multifaceted development: multi-criteria decision models with applications," Annals of Operations Research, Springer, vol. 293(2), pages 405-432, October.
    5. Tze San Ong & Boon Heng Teh & Ah Suat Lee, 2019. "Contingent Factors and Sustainable Performance Measurement (SPM) Practices of Malaysian Electronics and Electrical Companies," Sustainability, MDPI, vol. 11(4), pages 1-33, February.
    6. Santos, Augusto César de Jesus & Cavalcante, Cristiano Alexandre Virgínio & Wu, Shaomin, 2023. "Maintenance policies and models: A bibliometric and literature review of strategies for reuse and remanufacturing," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Aldery Silveira Junior & Rafael Rabelo Nunes, 2022. "Assessment of the Satisfaction Level of Users of Brazilian Cabotage—Containerized Cargo Segment," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    8. Zsuzsanna Katalin Szabo & Zsombor Szádoczki & Sándor Bozóki & Gabriela C. Stănciulescu & Dalma Szabo, 2021. "An Analytic Hierarchy Process Approach for Prioritisation of Strategic Objectives of Sustainable Development," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    9. Suzana Knežević & Dunja Prokić, 2023. "Indicators as a Foundation of Eco-Labelling of Baked Clay Construction Products in the Republic of Serbia," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    10. Rodríguez-Fuentes, Marian & Zepeda-Domínguez, José Alberto & Kluger, Lotta C. & Fumero-Andreu, Claudia María & Ponce-Díaz, Germán & Zetina-Rejón, Manuel J., 2025. "Supply networks of fisheries social-ecological systems: A systematic review of the network approach," Ecological Economics, Elsevier, vol. 227(C).
    11. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    12. Pingtao Yi & Weiwei Li & Lingyu Li, 2018. "Evaluation and Prediction of City Sustainability Using MCDM and Stochastic Simulation Methods," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    13. Faramarz Khosravi & Gokhan Izbirak, 2025. "A copula-based exponential probabilistic model for factor-dependence social sustainability assessment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 433-481, January.
    14. Alireza Karimi & Saeed Jafarzadeh-Ghoushchi & M. A. Mohtadi-Bonab, 2020. "Presenting a new model for performance measurement of the sustainable supply chain of Shoa Panjereh Company in different provinces of Iran (case study)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 140-154, February.
    15. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    16. Temesgen Gelata, Fikiru & Han, Jiqin & Kipkogei Limo, Shadrack, 2024. "Impact of dairy contract farming adoption on household resilience to food insecurity evidence from Ethiopia," World Development Perspectives, Elsevier, vol. 33(C).
    17. Fausto Cavallaro & Edmundas Kazimieras Zavadskas & Saulius Raslanas, 2016. "Evaluation of Combined Heat and Power (CHP) Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS," Sustainability, MDPI, vol. 8(6), pages 1-21, June.
    18. Qili Deng & Xing Huang & Jiang Zou & Yicheng He, 2024. "Screening of sustainable supply chain performance evaluation indicators based on the ill-conditioned index cycle method," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-18, March.
    19. Justyna Patals-Maliszewska & Hanna Losyk1, 2021. "Improving the Level of Sustainable Development in Industry 4.0 Context: A New Approach," European Research Studies Journal, European Research Studies Journal, vol. 0(4 - Part ), pages 75-84.
    20. Andrea Pieressa & Giacomo Baruffa & Marco Sorgato & Giovanni Lucchetta, 2025. "Enhancing weld line visibility prediction in injection molding using physics-informed neural networks," Journal of Intelligent Manufacturing, Springer, vol. 36(6), pages 4305-4318, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6362-:d:822064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.