IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2021i1p212-d711399.html
   My bibliography  Save this article

Toward Baggage-Free Airport Terminals: A Case Study of London City Airport

Author

Listed:
  • Yirui Jiang

    (School of Water, Energy and Environment, Cranfield University, Bedfordshire MK43 0AL, UK)

  • Runjin Yang

    (School of Water, Energy and Environment, Cranfield University, Bedfordshire MK43 0AL, UK)

  • Chenxi Zang

    (School of Water, Energy and Environment, Cranfield University, Bedfordshire MK43 0AL, UK)

  • Zhiyuan Wei

    (School of Water, Energy and Environment, Cranfield University, Bedfordshire MK43 0AL, UK)

  • John Thompson

    (School of Water, Energy and Environment, Cranfield University, Bedfordshire MK43 0AL, UK)

  • Trung Hieu Tran

    (School of Water, Energy and Environment, Cranfield University, Bedfordshire MK43 0AL, UK)

  • Adriana Encinas-Oropesa

    (School of Water, Energy and Environment, Cranfield University, Bedfordshire MK43 0AL, UK)

  • Leon Williams

    (School of Water, Energy and Environment, Cranfield University, Bedfordshire MK43 0AL, UK)

Abstract

Nowadays, the aviation industry pays more attention to emission reduction toward the net-zero carbon goals. However, the volume of global passengers and baggage is exponentially increasing, which leads to challenges for sustainable airports. A baggage-free airport terminal is considered a potential solution in solving this issue. Removing the baggage operation away from the passenger terminals will reduce workload for airport operators and promote passengers to use public transport to airport terminals. As a result, it will bring a significant impact on energy and the environment, leading to a reduction of fuel consumption and mitigation of carbon emission. This paper studies a baggage collection network design problem using vehicle routing strategies and augmented reality for baggage-free airport terminals. We use a spreadsheet solver tool, based on the integration of the modified Clark and Wright savings heuristic and density-based clustering algorithm, for optimizing the location of logistic hubs and planning the vehicle routes for baggage collection. This tool is applied for the case study at London City Airport to analyze the impacts of the strategies on carbon emission quantitatively. The result indicates that the proposed baggage collection network can significantly reduce 290.10 tonnes of carbon emissions annually.

Suggested Citation

  • Yirui Jiang & Runjin Yang & Chenxi Zang & Zhiyuan Wei & John Thompson & Trung Hieu Tran & Adriana Encinas-Oropesa & Leon Williams, 2021. "Toward Baggage-Free Airport Terminals: A Case Study of London City Airport," Sustainability, MDPI, vol. 14(1), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:212-:d:711399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/212/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/212/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    2. Erdoğan, Sevgi & Miller-Hooks, Elise, 2012. "A Green Vehicle Routing Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 100-114.
    3. Brian Kallehauge & Jesper Larsen & Oli B.G. Madsen & Marius M. Solomon, 2005. "Vehicle Routing Problem with Time Windows," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 67-98, Springer.
    4. J C S Brandão & A Mercer, 1998. "The multi-trip vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 49(8), pages 799-805, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Yirui & Tran, Trung Hieu & Williams, Leon, 2023. "Machine learning and mixed reality for smart aviation: Applications and challenges," Journal of Air Transport Management, Elsevier, vol. 111(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
    2. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    3. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    4. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    5. Hamed Farrokhi-Asl & Ahmad Makui & Armin Jabbarzadeh & Farnaz Barzinpour, 2020. "Solving a multi-objective sustainable waste collection problem considering a new collection network," Operational Research, Springer, vol. 20(4), pages 1977-2015, December.
    6. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    7. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    8. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    9. Joonyup Eun & Byung Duk Song & Sangbok Lee & Dae-Eun Lim, 2019. "Mathematical Investigation on the Sustainability of UAV Logistics," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    10. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    11. Muhammad Usama & Yongjun Shen & Onaira Zahoor, 2019. "Towards an Energy Efficient Solution for Bike-Sharing Rebalancing Problems: A Battery Electric Vehicle Scenario," Energies, MDPI, vol. 12(13), pages 1-21, June.
    12. Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel & Barbosa-Póvoa, Ana Paula, 2014. "Planning a sustainable reverse logistics system: Balancing costs with environmental and social concerns," Omega, Elsevier, vol. 48(C), pages 60-74.
    13. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    14. Jose Carlos Molina & Ignacio Eguia & Jesus Racero, 2019. "Reducing pollutant emissions in a waste collection vehicle routing problem using a variable neighborhood tabu search algorithm: a case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 253-287, July.
    15. Konur, Dinçer, 2014. "Carbon constrained integrated inventory control and truckload transportation with heterogeneous freight trucks," International Journal of Production Economics, Elsevier, vol. 153(C), pages 268-279.
    16. Arslan, Okan & Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Minimum cost path problem for Plug-in Hybrid Electric Vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 123-141.
    17. Mohammadi, M. & Torabi, S.A. & Tavakkoli-Moghaddam, R., 2014. "Sustainable hub location under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 89-115.
    18. Goeke, D. & Schneider, M., 2015. "Routing a Mixed Fleet of Electric and Conventional Vehicles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65939, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    19. Manuel Sanchez & Lorena Pradenas & Jean-Christophe Deschamps & Victor Parada, 2016. "Reducing the carbon footprint in a vehicle routing problem by pooling resources from different companies," Netnomics, Springer, vol. 17(1), pages 29-45, July.
    20. Shijin Wang & Xiaodong Wang & Xin Liu & Jianbo Yu, 2018. "A Bi-Objective Vehicle-Routing Problem with Soft Time Windows and Multiple Depots to Minimize the Total Energy Consumption and Customer Dissatisfaction," Sustainability, MDPI, vol. 10(11), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:212-:d:711399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.