IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2021i1p113-d709310.html
   My bibliography  Save this article

Mapping the Territorial Adaptation of Technological Innovation Systems—Trajectories of the Internal Combustion Engine

Author

Listed:
  • Daniel Weiss

    (Chair of Innovation Management, School of Business and Economics, Freie Universität Berlin, 14195 Berlin, Germany)

  • Philipp Scherer

    (Berlin Partner für Wirtschaft und Technologie GmbH, 10623 Berlin, Germany)

Abstract

Besides the rise of sustainable technologies, successful sustainability transitions crucially depend on the phase-out of unsustainable ones. However, the detailed dynamics of declining technological innovation systems (TIS) remain vague. Thus, based on the new TIS life cycle framework, we investigate how the technological dimension of a mature TIS adapts to increasing transformational pressures towards its decline. Considering the internal combustion engine (ICE) as a suitable research case, we measure the technological adaptation as changes in the dominant technological trajectory over time and across TIS territories. Empirically, this is operationalised by a main path analysis in patent citation networks, using 221,700 patents to cover the period from 10 January 1901 until 31 January 2019. Our results not only point to considerable shifts in the direction of technological development over time but also highlight stark differences across the three major car markets. Most notably, in contrast to USA and Japan, where hybrid powertrains have become the dominant alternative powertrains, the dominant trajectory in the EU territory points to an ongoing commitment towards diesel technology. In essence, our results highlight the importance of path dependency and connectivity of the knowledge search process as well as selective forces on the innovation system level, which have been neglected by related empirical studies. Conceptionally, our analysis demonstrates that the technological adaptation process is influenced by specific developments during a time period and heterogenous territorial dynamics within the TIS. Consequently, future TIS studies might consider spatially heterogeneous development cycles as well as possible mechanisms to establish an international trajectory towards sustainability goals.

Suggested Citation

  • Daniel Weiss & Philipp Scherer, 2021. "Mapping the Territorial Adaptation of Technological Innovation Systems—Trajectories of the Internal Combustion Engine," Sustainability, MDPI, vol. 14(1), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:113-:d:709310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karoliina Isoaho & Jochen Markard, 2020. "The Politics of Technology Decline: Discursive Struggles over Coal Phase‐Out in the UK," Review of Policy Research, Policy Studies Organization, vol. 37(3), pages 342-368, May.
    2. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    3. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    4. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    2. Andersson, Magnus & Ljunggren Söderman, Maria & Sandén, Björn A., 2019. "Challenges of recycling multiple scarce metals: The case of Swedish ELV and WEEE recycling," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    3. Zolfagharian, Mohammadreza & Walrave, Bob & Raven, Rob & Romme, A. Georges L., 2019. "Studying transitions: Past, present, and future," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    4. Monk, Alexander & Perkins, Richard, 2020. "What explains the emergence and diffusion of green bonds?," Energy Policy, Elsevier, vol. 145(C).
    5. Rakas, Marija & Hain, Daniel S., 2019. "The state of innovation system research: What happens beneath the surface?," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    6. Marlene O’Sullivan, 2020. "Industrial life cycle: relevance of national markets in the development of new industries for energy technologies – the case of wind energy," Journal of Evolutionary Economics, Springer, vol. 30(4), pages 1063-1107, September.
    7. Dahesh, Mehran Badin & Tabarsa, Gholamali & Zandieh, Mostafa & Hamidizadeh, Mohammadreza, 2020. "Reviewing the intellectual structure and evolution of the innovation systems approach: A social network analysis," Technology in Society, Elsevier, vol. 63(C).
    8. Jiang, Syuan-Yi, 2022. "Transition and innovation ecosystem – investigating technologies, focal actors, and institution in eHealth innovations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    9. Markard, Jochen & Hoffmann, Volker H., 2016. "Analysis of complementarities: Framework and examples from the energy transition," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 63-75.
    10. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Rohe, Sebastian & Oltmer, Marie & Wolter, Hendrik & Gmeiner, Nina & Tschersich , Julia, 2022. "Forever Niche: Why do organic vegetable varieties not diffuse?," Papers in Innovation Studies 2022/8, Lund University, CIRCLE - Centre for Innovation Research.
    12. Guillaume Ollivier & Daniele Magda & Armelle Mazé & Gaël Plumecocq & Claire Lamine, 2018. "Agroecological transitions: what can sustainability transition frameworks teach us? An ontological and empirical analysis," Post-Print hal-02622145, HAL.
    13. Bajmócy, Zoltán & Vas, Zsófia, 2012. "Az innovációs rendszerek 25 éve. Szakirodalmi áttekintés evolúciós közgazdaságtani megközelítésben [25 years of innovation systems. A literature review from the angle of evolutionary economics]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1233-1256.
    14. Harabi, Najib, 1994. "Technischer Fortschritt in der Schweiz: Empirische Ergebnisse aus industrieökonomischer Sicht [Technischer Fortschritt in der Schweiz:Empirische Ergebnisse aus industrieökonomischer Sicht]," MPRA Paper 6725, University Library of Munich, Germany.
    15. Bruce Rasmussen, 2010. "Innovation and Commercialisation in the Biopharmaceutical Industry," Books, Edward Elgar Publishing, number 13680.
    16. Weiss, Daniel & Nemeczek, Fabian, 2021. "A text-based monitoring tool for the legitimacy and guidance of technological innovation systems," Technology in Society, Elsevier, vol. 66(C).
    17. Vidushini Siva & Thomas Hoppe & Mansi Jain, 2017. "Green Buildings in Singapore; Analyzing a Frontrunner’s Sectoral Innovation System," Sustainability, MDPI, vol. 9(6), pages 1-23, May.
    18. Kieft, Alco & Harmsen, Robert & Hekkert, Marko P., 2020. "Toward ranking interventions for Technological Innovation Systems via the concept of Leverage Points," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    19. van Rijnsoever, Frank J. & van den Berg, Jesse & Koch, Joost & Hekkert, Marko P., 2015. "Smart innovation policy: How network position and project composition affect the diversity of an emerging technology," Research Policy, Elsevier, vol. 44(5), pages 1094-1107.
    20. Grillitsch, Markus & Hansen, Teis & Madsen, Stine, 2020. "How novel is Transformative Innovation Policy?," Papers in Innovation Studies 2020/8, Lund University, CIRCLE - Centre for Innovation Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:113-:d:709310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.