IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5010-d546315.html
   My bibliography  Save this article

Achieving Sustainability in Food Systems: Addressing Changing Climate through Real Time Nitrogen and Weed Management in a Conservation Agriculture-Based Maize–Wheat System

Author

Listed:
  • Kapila Shekhawat

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110 012, India)

  • Vinod K. Singh

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110 012, India)

  • Sanjay Singh Rathore

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110 012, India)

  • Rishi Raj

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110 012, India)

  • T. K. Das

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110 012, India)

Abstract

The proven significance of conservation agriculture (CA) in enhancing agronomic productivity and resource use efficiency across diverse agro-ecologies is often challenged by weed interference and nitrogen (N) immobilization. The collective effect of real-time N and weed management has been scarcely studied. To evaluate the appropriateness of sensor-based N management in conjunction with a broad-spectrum weed control strategy for the maize–wheat system, an experiment was conducted at ICAR—Indian Agricultural Research Institute—in New Delhi, India, during 2015–2016 and 2016–2017. Weed management in maize through Sesbania brown manure followed by post-emergence application of 2,4-D (BM + 2,4-D) in maize and tank-mix clodinafop-propargyl (60 g ha −1 ) and carfentrazone (20 g ha −1 ) (Clodi+carfentra) in wheat resulted in minimum weed infestation in both crops. It also resulted in highest maize (5.92 and 6.08 t ha −1 ) and wheat grain yields (4.91 and 5.4 t ha −1 ) during 2015–2016 and 2016–2017, respectively. Half of the N requirement, when applied as basal and the rest as guided by Optical crop sensor, resulted in saving 56 and 59 kg N ha −1 in the maize–wheat system, respectively, over 100% N application as farmers’ fertilizer practice during the two consecutive years. Interactive effect of N and weed management on economic yield of maize and wheat was also significant and maximum yield was obtained with 50% N application as basal + rest as per Optical crop sensor and weed management through BM+2,4-D in maize and Clodi+carfentra in wheat crop. The study concludes that real-time N management, complemented with appropriate weed management, improved growth, enhanced agronomic productivity and endorsed N saving under a CA-based maize–wheat system in Trans Indo-Gangetic Plains.

Suggested Citation

  • Kapila Shekhawat & Vinod K. Singh & Sanjay Singh Rathore & Rishi Raj & T. K. Das, 2021. "Achieving Sustainability in Food Systems: Addressing Changing Climate through Real Time Nitrogen and Weed Management in a Conservation Agriculture-Based Maize–Wheat System," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5010-:d:546315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5010/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5010/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dave S. Reay & Eric A. Davidson & Keith A. Smith & Pete Smith & Jerry M. Melillo & Frank Dentener & Paul J. Crutzen, 2012. "Global agriculture and nitrous oxide emissions," Nature Climate Change, Nature, vol. 2(6), pages 410-416, June.
    2. Carolina Fabbri & Marco Napoli & Leonardo Verdi & Marco Mancini & Simone Orlandini & Anna Dalla Marta, 2020. "A Sustainability Assessment of the Greenseeker N Management Tool: A Lysimetric Experiment on Barley," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    2. Guofeng Wang & Pu Liu & Jinmiao Hu & Fan Zhang, 2022. "Agriculture-Induced N 2 O Emissions and Reduction Strategies in China," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    3. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.
    4. Dario Caro & Steven Davis & Simone Bastianoni & Ken Caldeira, 2014. "Global and regional trends in greenhouse gas emissions from livestock," Climatic Change, Springer, vol. 126(1), pages 203-216, September.
    5. Raymond Mugandani & Liboster Mwadzingeni & Paramu Mafongoya, 2021. "Contribution of Conservation Agriculture to Soil Security," Sustainability, MDPI, vol. 13(17), pages 1-11, September.
    6. Martina Lori & Sarah Symnaczik & Paul Mäder & Gerlinde De Deyn & Andreas Gattinger, 2017. "Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-25, July.
    7. Chaobiao Meng & Jianyu Zhao & Ning Wang & Kaijing Yang & Fengxin Wang, 2022. "Black Plastic Film Mulching Increases Soil Nitrous Oxide Emissions in Arid Potato Fields," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
    8. Jason A. Hubbart & Nathan Blake & Ida Holásková & Domingo Mata Padrino & Matthew Walker & Matthew Wilson, 2023. "Challenges in Sustainable Beef Cattle Production: A Subset of Needed Advancements," Challenges, MDPI, vol. 14(1), pages 1-15, February.
    9. Ajay Gambhir & Tamaryn Napp & Adam Hawkes & Lena Höglund-Isaksson & Wilfried Winiwarter & Pallav Purohit & Fabian Wagner & Dan Bernie & Jason Lowe, 2017. "The Contribution of Non-CO 2 Greenhouse Gas Mitigation to Achieving Long-Term Temperature Goals," Energies, MDPI, vol. 10(5), pages 1-23, May.
    10. Kerebel, A. & Cassidy, R. & Jordan, P. & Holden, N.M., 2013. "Farmer perception of suitable conditions for slurry application compared with decision support system recommendations," Agricultural Systems, Elsevier, vol. 120(C), pages 49-60.
    11. Wenchao Cao & Su Liu & Zhi Qu & He Song & Wei Qin & Jingheng Guo & Qing Chen & Shan Lin & Jingguo Wang, 2019. "Contribution and Driving Mechanism of N 2 O Emission Bursts in a Chinese Vegetable Greenhouse after Manure Application and Irrigation," Sustainability, MDPI, vol. 11(6), pages 1-12, March.
    12. Wolf, Steven A. & Ghosh, Ritwick, 2020. "A practice-centered analysis of environmental accounting standards: integrating agriculture into carbon governance," Land Use Policy, Elsevier, vol. 96(C).
    13. Bos, Jules F.F.P. & ten Berge, Hein F.M. & Verhagen, Jan & van Ittersum, Martin K., 2017. "Trade-offs in soil fertility management on arable farms," Agricultural Systems, Elsevier, vol. 157(C), pages 292-302.
    14. Xiaocang Xu & Lu Zhang & Linhong Chen & Chengjie Liu, 2020. "The Role of Soil N 2 O Emissions in Agricultural Green Total Factor Productivity: An Empirical Study from China around 2006 when Agricultural Tax Was Abolished," Agriculture, MDPI, vol. 10(5), pages 1-13, May.
    15. Zhang, Xin & Meng, Fanqiao & Li, Hu & Wang, Ligang & Wu, Shuxia & Xiao, Guangmin & Wu, Wenliang, 2019. "Optimized fertigation maintains high yield and mitigates N2O and NO emissions in an intensified wheat–maize cropping system," Agricultural Water Management, Elsevier, vol. 211(C), pages 26-36.
    16. Esther Grüner & Michael Wachendorf & Thomas Astor, 2020. "The potential of UAV-borne spectral and textural information for predicting aboveground biomass and N fixation in legume-grass mixtures," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-21, June.
    17. Liang Xiao & Libin Bao & Lantian Ren & Yiqin Xie & Hong Wang & Xiang Wang & Jianfei Wang & Cece Qiao & Xin Xiao, 2022. "Appropriate Irrigation and Fertilization Regime Restrain Indigenous Soil Key Ammonia-Oxidizing Archaeal and Bacterial Consortia to Mitigate Greenhouse Gas Emissions," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    18. G. Y. Mahama & P. V. V. Prasad & K. L. Roozeboom & J. B. Nippert & C. W. Rice, 2020. "Reduction of Nitrogen Fertilizer Requirements and Nitrous Oxide Emissions Using Legume Cover Crops in a No-Tillage Sorghum Production System," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    19. Shen, Jiacheng & Treu, Roland & Wang, Junye & Hao, Xiying & Thomas, Ben W., 2019. "Modeling growing season and annual cumulative nitrous oxide emissions and emission factors from organically fertilized soils planted with barley in Lethbridge, Alberta, Canada," Agricultural Systems, Elsevier, vol. 176(C).
    20. Yang, Lan & Wang, Xue-Chao & Dai, Min & Chen, Bin & Qiao, Yuanbo & Deng, Huijing & Zhang, Dingfan & Zhang, Yizhe & Villas Bôas de Almeida, Cecília Maria & Chiu, Anthony S.F. & Klemeš, Jiří Jaromír & W, 2021. "Shifting from fossil-based economy to bio-based economy: Status quo, challenges, and prospects," Energy, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5010-:d:546315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.