IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i23p16030-d989421.html
   My bibliography  Save this article

Black Plastic Film Mulching Increases Soil Nitrous Oxide Emissions in Arid Potato Fields

Author

Listed:
  • Chaobiao Meng

    (Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
    Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China)

  • Jianyu Zhao

    (Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China)

  • Ning Wang

    (Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China)

  • Kaijing Yang

    (China Institute of Water Resources and Hydropower Research, Beijing 100048, China)

  • Fengxin Wang

    (Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China)

Abstract

Black plastic film mulching is a common practice for potato production in the arid area of Northwest China. Many studies have reported the significant positive effect of black plastic film mulch on potato harvest, while the effect of black plastic film mulch treatment on soil nitrous oxide (N 2 O) emissions is still unclear. As a consequence, this study aimed to examine the effect of black plastic film mulch treatment on N 2 O emission from arid upland potato fields. With the static chamber-gas chromatography method, soil N 2 O emissions were measured. The results showed that black plastic film mulching treatment significantly increased cumulative soil N 2 O emissions by 21–26% compared with non-mulched treatment. Cumulative N 2 O emission positively correlated with soil temperature, soil moisture, soil CO 2 concentration, and amoA - AOB abundance. This study indicated that black plastic film mulching, mainly through increasing soil temperature and soil moisture, increasing soil carbon dioxide (CO 2 ) concentration, and promoting the abundance of nitrification-related functional gene of amoA - AOB , regulated N 2 O emissions. This study also highlighted that the specific soil environment under black plastic film mulch is conducive to N 2 O emissions and lay the foundation for settling the contradiction between food production and greenhouse gas mitigation in upland soils. The negative effects of black plastic film mulching on the environment should be considered in future applications in food production.

Suggested Citation

  • Chaobiao Meng & Jianyu Zhao & Ning Wang & Kaijing Yang & Fengxin Wang, 2022. "Black Plastic Film Mulching Increases Soil Nitrous Oxide Emissions in Arid Potato Fields," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16030-:d:989421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/23/16030/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/23/16030/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Dedi & Chen, Lei & Qu, Hongchao & Wang, Yilin & Misselbrook, Tom & Jiang, Rui, 2018. "Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 202(C), pages 166-173.
    2. Dave S. Reay & Eric A. Davidson & Keith A. Smith & Pete Smith & Jerry M. Melillo & Frank Dentener & Paul J. Crutzen, 2012. "Global agriculture and nitrous oxide emissions," Nature Climate Change, Nature, vol. 2(6), pages 410-416, June.
    3. Ding, Dianyuan & Zhao, Ying & Feng, Hao & Hill, Robert Lee & Chu, Xiaosheng & Zhang, Tibin & He, Jianqiang, 2018. "Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 201(C), pages 246-257.
    4. Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenglin Wang & Qiyu Han & Chunjiang Li & Jianian Li & Dandan Kong & Faan Wang & Xiangjun Zou, 2024. "Assisting the Planning of Harvesting Plans for Large Strawberry Fields through Image-Processing Method Based on Deep Learning," Agriculture, MDPI, vol. 14(4), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    3. Wei Zhu & Ruiquan Qiao & Rui Jiang, 2022. "Modelling of Water and Nitrogen Flow in a Rain-Fed Ridge-Furrow Maize System with Plastic Mulch," Land, MDPI, vol. 11(9), pages 1-18, September.
    4. Zhang, Jinxia & Du, Liangliang & Xing, Zisheng & Zhang, Rui & Li, Fuqiang & Zhong, Tao & Ren, Fangfang & Yin, Meng & Ding, Lin & Liu, Xingrong, 2023. "Effects of dual mulching with wheat straw and plastic film under three irrigation regimes on soil nutrients and growth of edible sunflower," Agricultural Water Management, Elsevier, vol. 288(C).
    5. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    6. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    7. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    8. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    9. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    10. Stafford, William & Birch, Catherine & Etter, Hannes & Blanchard, Ryan & Mudavanhu, Shepherd & Angelstam, Per & Blignaut, James & Ferreira, Louwrens & Marais, Christo, 2017. "The economics of landscape restoration: Benefits of controlling bush encroachment and invasive plant species in South Africa and Namibia," Ecosystem Services, Elsevier, vol. 27(PB), pages 193-202.
    11. Guofeng Wang & Pu Liu & Jinmiao Hu & Fan Zhang, 2022. "Agriculture-Induced N 2 O Emissions and Reduction Strategies in China," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    12. Anik, Asif Reza & Eory, Vera & Begho, Toritseju & Rahman, Md. Mizanur, 2023. "Determinants of nitrogen use efficiency and gaseous emissions assessed from farm survey: A case of wheat in Bangladesh," Agricultural Systems, Elsevier, vol. 206(C).
    13. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Francesco N. Tubiello & Josef Schmidhuber, 2014. "Emissions of greenhouse gases from agriculture and their mitigation," Chapters, in: Raghbendra Jha & Raghav Gaiha & Anil B. Deolalikar (ed.), Handbook on Food, chapter 16, pages 422-442, Edward Elgar Publishing.
    15. Yang, Meijian & Wang, Guiling & Lazin, Rehenuma & Shen, Xinyi & Anagnostou, Emmanouil, 2021. "Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile Basin: A novel insight towards agricultural water management," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.
    17. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    18. Ahmmed Md Motasim & Abd Wahid Samsuri & Arina Shairah Abdul Sukor & Amin Mohd Adibah, 2021. "Gaseous Nitrogen Losses from Tropical Soils with Liquid or Granular Urea Fertilizer Application," Sustainability, MDPI, vol. 13(6), pages 1-11, March.
    19. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    20. Deng, Jianqiang & Zhang, Zhixin & Liang, Zhiting & Li, Zhou & Yang, Xianlong & Wang, Zikui & Coulter, Jeffrey A. & Shen, Yuying, 2020. "Replacing summer fallow with annual forage improves crude protein productivity and water use efficiency of the summer fallow-winter wheat cropping system," Agricultural Water Management, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16030-:d:989421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.