IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4949-d545215.html
   My bibliography  Save this article

Sustainable Valorisation of Silane-Treated Waste Glass Powder in Concrete Pavement

Author

Listed:
  • Mazen J. Al-Kheetan

    (Civil and Environmental Engineering Department, College of Engineering, Mutah University, Mutah, P.O. Box 7, Karak 61710, Jordan)

  • Juliana Byzyka

    (Civil Engineering Department, School of Science, Engineering and Environment, University of Salford, Newton Building, Crescent, Salford M5 4NT, UK)

  • Seyed Hamidreza Ghaffar

    (Department of Civil and Environmental Engineering, College of Engineering, Design and Physical Sciences, Brunel University London, Kingston Ln, Uxbridge, Middlesex UB8 3PH, UK)

Abstract

This research presents new insights into the utilisation of waste glass powder in concrete pavements. Two different types of glass powder were used as a partial replacement for sand: 10% neat glass powder (untreated) and 10% silane-treated glass powder. The interfacial bonding properties, physical properties, and mechanical properties of concrete pavement were assessed at 7 and 28 days. Results exposed a reduction of 5% and 2% in the compressive and flexural strengths, respectively, and an increase of 15% in water absorption after the addition of neat glass powder to concrete after 7 days of curing. This is due to weak interfacial bonding between the glass powder and cementitious matrix. However, the incorporation of silane-coated glass powder led to an increase in the compressive and flexural strengths by more than 22% and 28%, respectively, and reduced the water absorption of concrete by 8%, due to the coupling functionality of silane. After 28 days of curing, the compressive strength of concrete increased by 15% and 22% after the addition of neat glass powder and silane-treated glass powder, respectively. In addition, water absorption dropped by 5% and 7% after the incorporation of neat glass powder and silane-treated glass powder.

Suggested Citation

  • Mazen J. Al-Kheetan & Juliana Byzyka & Seyed Hamidreza Ghaffar, 2021. "Sustainable Valorisation of Silane-Treated Waste Glass Powder in Concrete Pavement," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4949-:d:545215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seyfang, Gill, 2010. "Community action for sustainable housing: Building a low-carbon future," Energy Policy, Elsevier, vol. 38(12), pages 7624-7633, December.
    2. Edmundas Kazimieras Zavadskas & Jonas Šaparauskas & Jurgita Antucheviciene, 2018. "Sustainability in Construction Engineering," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    3. Qingfu Li & Jing Hu, 2020. "Mechanical and Durability Properties of Cement-Stabilized Recycled Concrete Aggregate," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    4. Vellini, Michela & Savioli, Michela, 2009. "Energy and environmental analysis of glass container production and recycling," Energy, Elsevier, vol. 34(12), pages 2137-2143.
    5. Maria Cristina Collivignarelli & Giacomo Cillari & Paola Ricciardi & Marco Carnevale Miino & Vincenzo Torretta & Elena Cristina Rada & Alessandro Abbà, 2020. "The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review," Sustainability, MDPI, vol. 12(19), pages 1-34, September.
    6. Mahdi Naeini & Alireza Mohammadinia & Arul Arulrajah & Suksun Horpibulsuk, 2021. "Recycled Glass Blends with Recycled Concrete Aggregates in Sustainable Railway Geotechnics," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    7. Kunal M. Shelote & Hindavi R. Gavali & Ana Bras & Rahul V. Ralegaonkar, 2021. "Utilization of Co-Fired Blended Ash and Chopped Basalt Fiber in the Development of Sustainable Mortar," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazen J. Al-Kheetan, 2023. "Waste Not, Want Not: Sustainable Use of Anti-Stripping-Treated Waste Ceramic in Superpave Asphalt Mixtures," Sustainability, MDPI, vol. 15(9), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wenling & Zhang, Jinyun & Bluemling, Bettina & Mol, Arthur P.J. & Wang, Can, 2015. "Public participation in energy saving retrofitting of residential buildings in China," Applied Energy, Elsevier, vol. 147(C), pages 287-296.
    2. David Gibbs & Kirstie O'Neill, 2014. "Rethinking Sociotechnical Transitions and Green Entrepreneurship: The Potential for Transformative Change in the Green Building Sector," Environment and Planning A, , vol. 46(5), pages 1088-1107, May.
    3. Tiia-Lotta Pekkanen, 2021. "Institutions and Agency in the Sustainability of Day-to-Day Consumption Practices: An Institutional Ethnographic Study," Journal of Business Ethics, Springer, vol. 168(2), pages 241-260, January.
    4. Amornchai Challcharoenwattana & Chanathip Pharino, 2015. "Co-Benefits of Household Waste Recycling for Local Community’s Sustainable Waste Management in Thailand," Sustainability, MDPI, vol. 7(6), pages 1-21, June.
    5. Maryam Hussain Abal-Seqan & Shaligram Pokharel & Khalid Kamal Naji, 2023. "Key Success Factors and Their Impact on the Performance of Construction Projects: Case in Qatar," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    6. Artit Udomchai & Menglim Hoy & Apichat Suddeepong & Amornrit Phuangsombat & Suksun Horpibulsuk & Arul Arulrajah & Nguyen Chi Thanh, 2021. "Generalized Interface Shear Strength Equation for Recycled Materials Reinforced with Geogrids," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    7. Manisha Anantharaman, 2018. "Critical sustainable consumption: a research agenda," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 8(4), pages 553-561, December.
    8. Jingci Xie & Jianjian Liu & Xin Huo & Qingchun Meng & Mengyu Chu, 2021. "Fresh Food Dual-Channel Supply Chain Considering Consumers’ Low-Carbon and Freshness Preferences," Sustainability, MDPI, vol. 13(11), pages 1-29, June.
    9. Matschoss, Kaisa & Mikkonen, Irmeli & Gynther, Lea & Koukoufikis, Giorgos & Uihlein, Andreas & Murauskaite-Bull, Ingrida, 2022. "Drawing policy insights from social innovation cases in the energy field," Energy Policy, Elsevier, vol. 161(C).
    10. Changhao Liu & Raymond Côté, 2017. "A Framework for Integrating Ecosystem Services into China’s Circular Economy: The Case of Eco-Industrial Parks," Sustainability, MDPI, vol. 9(9), pages 1-20, August.
    11. Lin, Dan & Simmons, David, 2017. "Structured inter-network collaboration: Public participation in tourism planning in Southern China," Tourism Management, Elsevier, vol. 63(C), pages 315-328.
    12. Trivess Moore & Andréanne Doyon, 2018. "The Uncommon Nightingale: Sustainable Housing Innovation in Australia," Sustainability, MDPI, vol. 10(10), pages 1-18, September.
    13. Wang, Zhaohua & Liu, Qiang & Zhang, Bin, 2022. "What kinds of building energy-saving retrofit projects should be preferred? Efficiency evaluation with three-stage data envelopment analysis (DEA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Chad Stephen Boda, 2018. "Community as a Key Word: A Heuristic for Action-Oriented Sustainability Research," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    15. Aliakbar Kamari & Ashwin Paari & Henrik Øien Torvund, 2020. "BIM-Enabled Virtual Reality (VR) for Sustainability Life Cycle and Cost Assessment," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    16. Marie Horňáková & Petr Lehner, 2022. "Analysis of Measured Parameters in Relation to the Amount of Fibre in Lightweight Red Ceramic Waste Aggregate Concrete," Mathematics, MDPI, vol. 10(2), pages 1-15, January.
    17. Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
    18. Adel A. Zadeh & Yunxin Peng & Sheila M. Puffer & Myles D. Garvey, 2022. "Sustainable Sand Substitutes in the Construction Industry in the United States and Canada: Assessing Stakeholder Awareness," Sustainability, MDPI, vol. 14(13), pages 1-26, June.
    19. Innocent, Morgane & Francois-Lecompte, Agnès, 2018. "The values of electricity saving for consumers," Energy Policy, Elsevier, vol. 123(C), pages 136-146.
    20. Giovanni Santi & Emanuele Leporelli & Michele Di Sivo, 2019. "Improving Sustainability in Architectural Research: Biopsychosocial Requirements in the Design of Urban Spaces," Sustainability, MDPI, vol. 11(6), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4949-:d:545215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.