IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4395-d536383.html
   My bibliography  Save this article

Smart Products Enable Smart Regulations—Optimal Durability Requirements Facilitated by the IoT

Author

Listed:
  • Moritz-C. Schlegel

    (Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany)

  • Claudia Koch

    (Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany)

  • Mona Mirtsch

    (Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany)

  • Andrea Harrer

    (Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany)

Abstract

The challenges and opportunities linked with IoT have been intensively discussed in recent years. The connectivity of things over their entire life cycle and the smart properties associated with it provide new functionalities and unprecedented availability of (usage) data. This offers huge opportunities for manufacturers, service providers, users, and also policymakers. The latter may impact policy areas such as the regulations on resource and materials efficiency under the Ecodesign Directive 2009/125/EC. With the general approach as it is practiced today, legal requirements are usually set for entire product groups without considering the products individually, including user behavior and environmental conditions. The increasing number of smart products and the growing availability of product data are sparking a discussion on whether these requirements could be more product and application-specific. This paper presents a method for calculating the economically and ecologically optimal durability of a product. It allows determining the point in time when a product should be replaced by combining consumer data with product design data. This novel approach could contribute to making product regulation more flexible and possibly more efficient. In this context, fundamental challenges associated with smart products in policymaking are also discussed.

Suggested Citation

  • Moritz-C. Schlegel & Claudia Koch & Mona Mirtsch & Andrea Harrer, 2021. "Smart Products Enable Smart Regulations—Optimal Durability Requirements Facilitated by the IoT," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4395-:d:536383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, In & Lee, Kyoochun, 2015. "The Internet of Things (IoT): Applications, investments, and challenges for enterprises," Business Horizons, Elsevier, vol. 58(4), pages 431-440.
    2. Gustavo Cattelan Nobre & Elaine Tavares, 2017. "Scientific literature analysis on big data and internet of things applications on circular economy: a bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 463-492, April.
    3. Moore, Tyler, 2010. "The economics of cybersecurity: Principles and policy options," International Journal of Critical Infrastructure Protection, Elsevier, vol. 3(3), pages 103-117.
    4. Konstantinos Demestichas & Emmanouil Daskalakis, 2020. "Information and Communication Technology Solutions for the Circular Economy," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    5. W. Kip Viscusi, 1978. "A Note on "Lemons" Markets with Quality Certification," Bell Journal of Economics, The RAND Corporation, vol. 9(1), pages 277-279, Spring.
    6. Alsyouf, Imad, 2007. "The role of maintenance in improving companies' productivity and profitability," International Journal of Production Economics, Elsevier, vol. 105(1), pages 70-78, January.
    7. Alexandra-Gwyn Paetz & Elisabeth Dütschke & Wolf Fichtner, 2012. "Smart Homes as a Means to Sustainable Energy Consumption: A Study of Consumer Perceptions," Journal of Consumer Policy, Springer, vol. 35(1), pages 23-41, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Yongfeng & Liu, Wei & Rani, Pratibha & Alrasheedi, Melfi, 2021. "Internet of Things (IoT) adoption barriers for the circular economy using Pythagorean fuzzy SWARA-CoCoSo decision-making approach in the manufacturing sector," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    2. Adriane Cavalieri & João Reis & Marlene Amorim, 2021. "Circular Economy and Internet of Things: Mapping Science of Case Studies in Manufacturing Industry," Sustainability, MDPI, vol. 13(6), pages 1-32, March.
    3. Sanjeev Yadav & Sunil Luthra & Dixit Garg, 2022. "Internet of things (IoT) based coordination system in Agri-food supply chain: development of an efficient framework using DEMATEL-ISM," Operations Management Research, Springer, vol. 15(1), pages 1-27, June.
    4. Massimiliano Viglioglia & Matteo Giovanardi & Riccardo Pollo & Pier Paolo Peruccio, 2021. "Smart District and Circular Economy: The Role of ICT Solutions in Promoting Circular Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    5. Zhang, Yi & Huang, Ying & Porter, Alan L. & Zhang, Guangquan & Lu, Jie, 2019. "Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 795-807.
    6. Nicole D. Sintov & P. Wesley Schultz, 2017. "Adjustable Green Defaults Can Help Make Smart Homes More Sustainable," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    7. Tuba Bircan & Almila Alkim Akdag Salah, 2022. "A Bibliometric Analysis of the Use of Artificial Intelligence Technologies for Social Sciences," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    8. Konrad Stahl & Roland Strausz, 2017. "Certification and Market Transparency," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(4), pages 1842-1868.
    9. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    10. Salvatore Piccolo & Aldo Pignataro, 2016. "Consumer Loss Aversion, Product Experimentation and Implicit Collusion," CSEF Working Papers 457, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    11. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    12. Nino Paresashvili & Maia Nikvashvili, 2019. "Career Management Peculiarities in Educational Institutions," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 5, January -.
    13. Mazaher Kianpour & Stewart J. Kowalski & Harald Øverby, 2021. "Systematically Understanding Cybersecurity Economics: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    14. Athanasios Tsipis & Asterios Papamichail & Ioannis Angelis & George Koufoudakis & Georgios Tsoumanis & Konstantinos Oikonomou, 2020. "An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting," Energies, MDPI, vol. 13(14), pages 1-35, July.
    15. Bent Flyvbjerg & Alexander Budzier & Jong Seok Lee & Mark Keil & Daniel Lunn & Dirk W. Bester, 2022. "The Empirical Reality of IT Project Cost Overruns: Discovering A Power-Law Distribution," Papers 2210.01573, arXiv.org.
    16. Qinglan Liu & Longjian Yang & Miying Yang, 2021. "Digitalisation for Water Sustainability: Barriers to Implementing Circular Economy in Smart Water Management," Sustainability, MDPI, vol. 13(21), pages 1-28, October.
    17. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    18. Sultan Çetin & Catherine De Wolf & Nancy Bocken, 2021. "Circular Digital Built Environment: An Emerging Framework," Sustainability, MDPI, vol. 13(11), pages 1-34, June.
    19. Bettina Freitag & Lukas Häfner & Verena Pfeuffer & Jochen Übelhör, 2020. "Evaluating investments in flexible on-demand production capacity: a real options approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 133-161, April.
    20. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4395-:d:536383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.