IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11868-d665839.html
   My bibliography  Save this article

Digitalisation for Water Sustainability: Barriers to Implementing Circular Economy in Smart Water Management

Author

Listed:
  • Qinglan Liu

    (College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK)

  • Longjian Yang

    (Ecological Environment Promotion Centre, Ecology and Environment Bureau, Wenzhou 325000, China)

  • Miying Yang

    (Group of Sustainability, School of Management, Cranfield University, Cranfield MK43 0AL, UK)

Abstract

“Clean water and sanitation” is listed as one of the 17 United Nations’ Sustainable Development Goals and implementing circular economy principles in the water sector has been widely regarded as an important approach in achieving this goal. In the era of Industry 4.0, research and practice in the digitalisation of the water sector to create a smart water system have attracted increasing attention. Despite the growing interest, limited research has been devoted to how digital technologies might enhance circularity. In practice, smart water systems often fail to promote circularity in such aspects as water reuse and resources recovery. This paper aims to identify the main barriers to implementing circularity in the smart water management system in Zhejiang, China. The research adopts a mixed research method that includes a literature review to identify the potential barriers from the existing studies, a case study to determine the most critical barriers in practice, and a fuzzy Delphi method to reach a consensus on the crucial barriers. The research identified 22 main barriers to implementing circular economy in smart water management. The barriers are divided into three categories: infrastructure and economic, technology, and institution and governance. The results show that the barriers related to recycling technologies, digital technology know-how, and the lack of CE awareness raise the most concern. Our findings also indicate that experts are interested in the decentralized wastewater treatment system. This research provides significant insights that practitioners, researchers, and policymakers can use in developing and implementing digital-based CE strategies to reduce water scarcity and pollution.

Suggested Citation

  • Qinglan Liu & Longjian Yang & Miying Yang, 2021. "Digitalisation for Water Sustainability: Barriers to Implementing Circular Economy in Smart Water Management," Sustainability, MDPI, vol. 13(21), pages 1-28, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11868-:d:665839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Chen & Chu, Zhongzhu & Gu, Wei, 2021. "Assessing the role of public attention in China's wastewater treatment: A spatial perspective," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    2. Bouzon, Marina & Govindan, Kannan & Rodriguez, Carlos M.Taboada & Campos, Lucila M.S., 2016. "Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 182-197.
    3. Konstantinos Demestichas & Emmanouil Daskalakis, 2020. "Information and Communication Technology Solutions for the Circular Economy," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    4. Tanaka Mandy Mbavarira & Christine Grimm, 2021. "A Systemic View on Circular Economy in the Water Industry: Learnings from a Belgian and Dutch Case," Sustainability, MDPI, vol. 13(6), pages 1-62, March.
    5. Timothy O. Olawumi & Daniel W.M. Chan, 2019. "Critical success factors for implementing building information modeling and sustainability practices in construction projects: A Delphi survey," Sustainable Development, John Wiley & Sons, Ltd., vol. 27(4), pages 587-602, July.
    6. Will McDowall & Yong Geng & Beijia Huang & Eva Barteková & Raimund Bleischwitz & Serdar Türkeli & René Kemp & Teresa Doménech, 2017. "Circular Economy Policies in China and Europe," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 651-661, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Zhu & Xiangyang Zhou & Jin Guo, 2023. "Sustainability of Agriculture: A Study of Digital Groundwater Supervision," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    2. Qinglan Liu & Adriana Hofmann Trevisan & Miying Yang & Janaina Mascarenhas, 2022. "A framework of digital technologies for the circular economy: Digital functions and mechanisms," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2171-2192, July.
    3. Aurelija Burinskienė & Milena Seržantė, 2022. "Digitalisation as the Indicator of the Evidence of Sustainability in the European Union," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    4. Piubello Orsini, Luca & Leardini, Chiara & Danesi, Letizia & Guerrini, Andrea & Frison, Nicola, 2023. "Circular economy in the water and wastewater sector: Tariff impact and financial performance of SMARTechs," Utilities Policy, Elsevier, vol. 83(C).
    5. Arezoo Ghazanfari, 2023. "An Analysis of Circular Economy Literature at the Macro Level, with a Particular Focus on Energy Markets," Energies, MDPI, vol. 16(4), pages 1-24, February.
    6. Radosław Drozd & Radosław Wolniak & Jan Piwnik, 2023. "Systemic analysis of a manufacturing process based on a small scale bakery," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1421-1437, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability,, Springer.
    2. Aurelia Rybak & Aleksandra Rybak, 2021. "Methods of Ensuring Energy Security with the Use of Hard Coal—The Case of Poland," Energies, MDPI, vol. 14(18), pages 1-25, September.
    3. Steliana Rodino & Ruxandra Pop & Cristina Sterie & Andreea Giuca & Eduard Dumitru, 2023. "Developing an Evaluation Framework for Circular Agriculture: A Pathway to Sustainable Farming," Agriculture, MDPI, vol. 13(11), pages 1-24, October.
    4. Kirchherr, Julian & Piscicelli, Laura & Bour, Ruben & Kostense-Smit, Erica & Muller, Jennifer & Huibrechtse-Truijens, Anne & Hekkert, Marko, 2018. "Barriers to the Circular Economy: Evidence From the European Union (EU)," Ecological Economics, Elsevier, vol. 150(C), pages 264-272.
    5. Daniel Ddiba & Kim Andersson & Arno Rosemarin & Helfrid Schulte-Herbrüggen & Sarah Dickin, 2022. "The circular economy potential of urban organic waste streams in low- and middle-income countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1116-1144, January.
    6. Leslier Valenzuela-Fernández & Manuel Escobar-Farfán, 2022. "Zero-Waste Management and Sustainable Consumption: A Comprehensive Bibliometric Mapping Analysis," Sustainability, MDPI, vol. 14(23), pages 1-24, December.
    7. Yuxue Yang & Xuejiao Tan & Yafei Shi & Jun Deng, 2023. "What are the core concerns of policy analysis? A multidisciplinary investigation based on in-depth bibliometric analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    8. Yeo, Lip Siang & Teng, Sin Yong & Ng, Wendy Pei Qin & Lim, Chun Hsion & Leong, Wei Dong & Lam, Hon Loong & Wong, Yat Choy & Sunarso, Jaka & How, Bing Shen, 2022. "Sequential optimization of process and supply chains considering re-refineries for oil and gas circularity," Applied Energy, Elsevier, vol. 322(C).
    9. Gavin Melles, 2021. "Figuring the Transition from Circular Economy to Circular Society in Australia," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    10. Jing Shao, 2019. "Sustainable consumption in China: New trends and research interests," Business Strategy and the Environment, Wiley Blackwell, vol. 28(8), pages 1507-1517, December.
    11. Syed Abdul Rehman Khan & Arsalan Zahid Piprani & Zhang Yu, 2022. "Digital technology and circular economy practices: future of supply chains," Operations Management Research, Springer, vol. 15(3), pages 676-688, December.
    12. Wishal Naveed & Majsa Ammouriova & Noman Naveed & Angel A. Juan, 2022. "Circular Economy and Information Technologies: Identifying and Ranking the Factors of Successful Practices," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    13. Mohammadreza Akbari & John L. Hopkins, 2022. "Digital technologies as enablers of supply chain sustainability in an emerging economy," Operations Management Research, Springer, vol. 15(3), pages 689-710, December.
    14. Magdalena Muradin & Zenon Foltynowicz, 2019. "The Circular Economy in the Standardized Management System," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 21(S13), pages 871-871, November.
    15. Puppala, Harish & Peddinti, Pranav R.T. & Tamvada, Jagannadha Pawan & Ahuja, Jaya & Kim, Byungmin, 2023. "Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India," Technology in Society, Elsevier, vol. 74(C).
    16. Andrea Cecchin & Roberta Salomone & Pauline Deutz & Andrea Raggi & Laura Cutaia, 2021. "What Is in a Name? The Rising Star of the Circular Economy as a Resource-Related Concept for Sustainable Development," Circular Economy and Sustainability,, Springer.
    17. Yan Ma & Johan Berg Pettersen, 2023. "Life cycle assessment of pig iron production from bauxite residue: A European case study," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1639-1652, December.
    18. Nallapaneni Manoj Kumar & Shauhrat S. Chopra, 2022. "Leveraging Blockchain and Smart Contract Technologies to Overcome Circular Economy Implementation Challenges," Sustainability, MDPI, vol. 14(15), pages 1-18, August.
    19. K. Mathiyazhagan & Srijit Krishnan & Uma Bharathi & Andrea Appolloni, 2021. "Pathways towards reverse logistics adoption in Indian educational institutes: a challenging factors analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 58(3), pages 661-689, September.
    20. Abderahman Rejeb & Karim Rejeb & John G. Keogh & Suhaiza Zailani, 2022. "Barriers to Blockchain Adoption in the Circular Economy: A Fuzzy Delphi and Best-Worst Approach," Sustainability, MDPI, vol. 14(6), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11868-:d:665839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.